"Физика – моя профессия" - читать интересную книгу автора (Китайгородский Александр Исаакович)

ХимияГлава 10

…здесь автор подкапывается под своих друзей-химиков и пытается посягнуть на существенную часть их деятельности. Автор объясняет, что химики должны изготовлять как можно больше всяких хороших вещей.

Автор просит разрешение начать главу с самого обыденного примера – домашнего химического опыта за обеденным столом.

Белый кусочек сахара, опущенный в стакан горячего чая, исчезает на наших глазах. Он распадается на молекулы – мельчайшие представители вещества. Молекула сахара построена из атомов трех сортов – углерода, кислорода и водорода. Расположены они в определенной пространственной последовательности, которую с некоторым трудом можно изобразить на рисунке. Из тех же атомов природа способна создать другую постройку. Это уже будут молекулы другого вещества, не только по вкусу, но и по всем другим свойствам не похожего на сахар.

Однако не всякая постройка атомов возможна.

Дело в том, что атомы обладают определенной валентностью. Валентность – это число, показывающее, со сколькими другими атомами может наш атом соединиться крепкими (их называют химическими) связями. От атома углерода можно провести четыре черточки – он четырехвалентен, от кислорода две, от водорода одну.

Свобода ограничена, но тем не менее возможности для постройки разных молекул из одного из того же набора атомов (такие молекулы называются изомерами) колоссальны. Можно подсчитать, что, скажем, молекула, состоящая из 20 атомов углерода, может быть сконструирована примерно полумиллионом способов. Иными словами, существует столько совершенно разных веществ, имеющих одинаковый атомный состав.

Если вспомнить, что атомов в природе не два, а около сотни, то бесконечное разнообразие молекул станет очевидным.

В природе редко встречаются вещества, построенные из молекул одного сорта; большей частью мы имеем дело со смесями. Одна из задач химии – исследовать молекулярный состав таких смесей и разделять их на чистые вещества, построенные из молекул одного сорта.

Но все же главная задача химии – это делать новые вещества, такие, которых в природе не встречается или их мало.

Возможность изготовления новых веществ основывается, например, на том, что в ряде случаев двум столкнувшимся молекулам выгодно разломаться и перестроиться. Прибегнем к спасительной аналогии: встречаются два человека – маленький, в пиджаке до пят, и высокий, в кургузом сюртучке, с трудом натянутом на плечи. Ясно, что им есть резон обменяться пиджаками и мирно разойтись. И выгода в перестройке столкнувшихся молекул заключается в том, что в новых молекулярных конструкциях атомам удается расположиться поудобнее.

Смешивая молекулы разных сортов и заставляя их сталкиваться, химики фабрикуют новые молекулы, а значит, готовят новые вещества. Способов их изготовления много. Можно смешивать газы или жидкости; можно растворять вещества в общем растворителе.

Изготовление новых молекул пошло быстрым ходом уже в XIX веке, а к сегодняшнему дню химики создали около миллиона веществ. Разумеется, лишь совершенно ничтожная их доля пошла в практическое употребление. Но проделанную работу никак нельзя назвать напрасной. Получая новые вещества, химики одновременно находили правила их перестройки и устанавливали наилучшие и кратчайшие пути для образования молекулы, архитектура которой была заранее задумана.

Умение химиков ориентироваться в путях, которыми можно разрушить молекулу по вполне определенным связям и, наоборот, связать куски молекул вполне определенным образом, совершенно поразительное для неспециалиста. Мне неоднократно приходилось задавать химику вопрос, а можно ли соединить атомы таким-то способом. Минута размышления, и следовал ответ: да, это нетрудно сделать в две-три стадии, или: можно, но это трудный синтез. Редко оказывалось, что путь к получению задуманной конструкции еще неясен.

Задача химика осложняется еще и тем, что мало получить новое вещество, надо еще доказать, что полученное имеет задуманную структуру. У меня создалось представление, что на эту цель серьезный химик тратит больше времени, чем на получение вещества. А доказывается строение тоже химическими способами. Обычно проводится такое рассуждение: если предполагаемое строение верно, то при смешении с таким-то веществом должно получиться то-то; если этого не случилось, то вещество иное. И таких проверок делается не одна, а несколько. Лишь после длительной и строгой проверки можно сообщить в научный журнал, что к миллиону веществ, записанных в справочнике, прибавилось еще одно – новое, миллион первое.

Большая часть химиков работает над изучением закономерностей химических реакций. Но есть исследователи, принадлежащие к отряду прикладников. Как правило, они становятся за лабораторные столы для производства ряда синтезов, среди которых надеются найти интересные для практики вещества. Прикладная химия решает, кроме того, задачу очистки веществ и разрабатывает наиболее дешевые пути синтеза.

Успех химии еще в большей степени, чем в какой-либо другой области знания, совершенно немыслим без систематической работы химиков-прикладников. Дело в том, что теория не дает еще способа предугадать, какая молекула нужна для создания материала, выдающегося по своим свойствам. Поэтому интересные находки оказываются на пути движения химиков-практиков.

Успехи химии за последние десятилетия чрезвычайно внушительны. Достаточно назвать искусственный каучук и синтетические волокна. А фармацевтическая промышленность? Поразительные лекарства, революционизировавшие медицину, – результат огромной работы химиков-синтетиков.

Тенденция замены естественных материалов искусственными усиливается. Пока что химия начала нас одевать и обувать, но недалеко будущее, когда она начнет вытеснять с обеденных столов натуральные бифштексы, заменив их, может быть, менее вкусными (на первых порах!) изделиями из нефтяных продуктов.

Партийные решения последних лет поставили перед советским народом ответственную задачу – интенсивнее развивать химию и химическую промышленность. В ряде случаев для этого достаточно увеличить выпуск продукции, вырабатываемой по известным технологическим прописям. Но это не все; мысли о новых крепких искусственных нитях, об эффективных удобрениях, о веществах, как можно более вредных для насекомых и в то же время безопасных для полезных животных и человека, должны овладевать умами советских химиков. Наша химия обязана выходить на передний край мировой науки. А чтобы оказаться впереди, недостаточно развивать лишь химическую технологию, нужно уделить внимание и синтетической химии. А ее успех во второй половине XX века немыслим без развития всего естествознания.

До последних двух-трех десятилетий химия была замкнутой областью естествознания, обладающей своими методами и эмпирическими правилами. Но вот рванулась вперед физика. Она завоевала новые позиции, установив правила построения молекул и атомов и законы движения и взаимодействия атомов и электронов. Эти правила и законы не могли не начать свое проникновение в химию.

Прежде всего стало очевидным, что нет никаких особых химических законов и не существует какой-то химической материи. Общие законы движения и взаимодействия атомов и электронов должны определять свойства вещества и управлять процессами разрушения и созидания молекул в процессе химической реакции. А если так, то эмпирические правила, накопленные химиками, должны иметь общее объяснение, должны быть частными случаями, вытекающими из общих законов природы. Значит, надо подвести под химию общий физический фундамент.

Работа эта началась лет тридцать назад, сейчас она в самом разгаре и уже приносит ощутимые результаты.

Теоретические проблемы химии очень сложны. Посудите сами. Одна молекула, сталкиваясь с другой, может нанести ей удар с тыла, фронта или флангов. И от этого соударения результат химического процесса может быть различным. В этом состоит первая сложность.

Перестройка молекул может произойти не в одну, а в несколько стадий. Значит, рассмотреть надо не только столкновение исходных молекул, но и встречи промежуточных осколков. Такова вторая сложность.

Разрушение молекулы или ее осколков может происходить по-разному: молекула может разломиться так, что с одного осколка на другой перейдет лишний электрон, а возможно, этого и не произойдет. Вот вам третья сложность.

И даже если предположить, что все сказанное известно, то и тогда математически рассчитать результат встречи, пользуясь законами движения электронов, практически невозможно. Короче, мы не умеем предсказывать результат химической реакции на основе общих законов природы, хотя ни на секунду не сомневаемся, что все происходит в строгом согласии с ними.

Ну, а как добиться хотя бы частичных успехов? Достигаются они на двух путях. Первый – это поиски эмпирических закономерностей, связывающих химическое поведение молекулы с ее структурой (структуры молекул определяются физическими методами исследования). Эмпирическую закономерность строго вывести мы не можем. Устанавливается она чисто опытным путем. Какой же толк от нее? А вот какой.

Представьте себе, что вас интересует класс веществ из 10 000 представителей и вы выбрали из них 100. Для этой сотни вы устанавливаете эмпирическое правило и говорите: в 100 случаях оно выполнялось без исключения, и хотя абсолютно ручаться нельзя, но считается крайне невероятным, чтобы это правило не выполнялось для остальных 9900 соединений.

Большей частью так оно и бывает, а если и находятся исключения, то они наталкивают на необходимость более глубокого изучения этого правила.

Разумеется, поиск эмпирических закономерностей требует широкого и систематического исследования.

Второй путь – это создание грубых моделей молекулы, а уже по моделям можно рассчитать если не весь процесс реакции, то какие-нибудь его этапы; не все свойства, а хотя бы какое-нибудь одно. Приведем пример одного из достижений физического подхода к химии. Физики научились измерять размеры атомов, следовательно, молекулу можно изобразить объемной моделью. На ней хорошо видно, как некоторые атомы оказались запрятанными в середину молекулы и к ним невозможно подобраться. Если для проведения реакции химику надо подвести к запрятанному атому какой-либо атом другой молекулы, то он уже заранее будет знать, что такая попытка напрасна. А это уже предсказание. И пусть оно говорит о невозможности задуманного пути реакции, все равно оно очень ценно. Конечно, это лишь частичный успех теории, так как химический процесс зависит не только от положения атомов в молекуле, но и от многих других причин, и геометрия молекулы лишь один из определяющих факторов.

Другой пример успеха – это возможность предсказания цветности вещества. Химики, синтезирующие красящие вещества, пользуются общими закономерностями, которые связывают цветность с наличием в молекуле определенных атомных группировок. А это тоже неплохое достижение.

Химики, занимающиеся теорией, называют себя обычно физико-химиками. С моей точки зрения, они просто физики, но заняты изучением химических процессов. Ведь работают они физическими методами, исходят в своих построениях из законов физики, мыслят и рассуждают совершенно так же, как и физики, не интересующиеся химическими превращениями.

В общем, конечно, не в названии дело, но мне все время хочется зачислить всех работающих над подведением фундамента под естествознание в одну дивизию.

Отсутствие совершенной теории создает благоприятную почву для всевозможных «уклонов», вредных для науки.

Появляется категория практиков-скептиков, которые заявляют: лишнее все это, и без теории справляемся; надо делать новые вещества и внедрять их в практику – вот и вся задача.

Этот уклон порожден прежде всего самоуверенной невежественностью. Если внимательно проследить за последними успехами химии, то можно смело сказать, что ряд новых интереснейших материалов не мог бы быть создан без достижений теоретической химии. Также безоговорочно можно утверждать, что скорость работы по синтезу новых веществ существенно упала бы, если бы химики не пользовались в выборе оптимальных путей синтеза разработанными теоретическими представлениями.

В Киеве мне рассказали о двух институтах, занятых разработкой схожих проблем. Один работал успешно, другой – плохо. Директор хорошего института предоставил более чем половине сотрудников заниматься теоретическими проблемами. К отличным результатам привело влияние этой половины на своих собратьев-синтетиков. Работа института проходила, как говорится, на высоком теоретическом уровне. Второй директор принадлежал к скептикам-практикам, теорией в институте не занимались. Отсутствие внимания к теории резко отрицательно сказалось на успехе практической работы.

Другая опасность – это зарождение ложных теорий, авторы которых отмахиваются от достижений теоретической науки, не желают понять, что физика является общим фундаментом естествознания.

Такой доморощенный теоретик отличается от изобретателей вечных двигателей, о которых шла речь в предыдущей главе, лишь в одном отношении: обычно он хороший синтетик или технолог и совсем недурно знает свое дело, он легко оперирует химическими уравнениями, и практическое знание реакций помогает ему подыскивать примеры для иллюстрации своей теории. Выглядит такая теория весьма наукообразно – в ней новые термины, эффектные символы, мудреные и темные фразы. Изложение своих мыслей подобный автор ведет обычно запальчиво, скачущим темпом. Он старается пресечь возможные возражения директивностью тона и безапелляционностью в построении фраз. Сверкающие глаза (как у фанатика) отбивают у вас охоту доказывать ему произвольность его построений, пробелы в логике. Что «гению» логика!

Загонять такого «гения» в угол следует лишь одним способом: допускать мысль, что он, может быть, и прав. Напомнить ему, что верным признаком теории является возможность делать предсказания, и затем просить его сказать, какую реакцию он может предсказать и какое неизвестное явление предвидеть. Вы не получите ответа на этот вопрос, ибо автор новой теории «объясняет» при помощи своих хитроумных представлений то, что уже давно известно.

Представители лженауки в химии, как и в других областях, претендуют обычно на роль революционеров, прибегают к политическим спекуляциям, для того чтобы заранее уничтожить возможные возражения. К сожалению, еще приходится сталкиваться с такими деятелями и читать их «труды».

Есть ученые мужи от химии и другой категории. Представитель ее может быть вполне грамотным, с негодованием относиться к лженауке, оставляющей в забвении общепризнанные законы природы, пользоваться в своих исследованиях научными методами, и, несмотря на все это, работа его будет пустышкой, если он без внимания отнесется к основным заповедям физического мышления. А одна из заповедей, которая, к сожалению, нарушается теоретиками-химиками очень часто, – это не увлекаться бесполезными расчетами. Бесполезными в том смысле, о каком уже говорилось, – сложный и занимающий массу времени расчет приводит к результатам, которые не ведут к установлению правил, позволяющих предсказывать новые факты, а служат исключительно интерпретации уже установленных экспериментом подробностей.

Популярность таких расчетов психологически понятна. Химику-синтетику всегда интересно узнать, почему найденная им реакция идет так, а не иначе. И он всегда глубоко признателен теоретику, появляющемуся в его лаборатории с килограммом бумаги, испещренной трехэтажными формулами и семизначными цифрами, и твердым голосом вещающему:

– Реакция шла так, а не иначе по очень простой причине – легко отрывающийся атом слабо связан с остальной частью молекулы.

Химик-практик в восторге, горячо жмет руку теоретику, открывшему истину трудами своих бессонных ночей, горячо благодарит и приступает к дальнейшей работе; ведь надо ставить сотни опытов, чтобы выяснить поведение в реакции других веществ.

Я как-то присутствовал на матче боксеров. Парни изрядно колотили друг друга, раздавался гонг, судья поднимал руку одного из них и объявлял его победителем. Потом на ринг поднималась следующая пара. Я пытался заранее определить, кто будет победителем матча, но ошибался так же часто, как и угадывал.

Поняв безнадежность этой попытки, я стал рассматривать публику. Наверное, многие посетители были завсегдатаями, и они без труда отличали нокдаун от нокаута. Но были и случайные посетители, вроде меня. Один из них сидел рядом и по окончании каждого боя спрашивал у меня:

– Как вы думаете, почему он победил?

Придя к заключению, что предсказание безнадежно, я начал отвечать моему соседу уверенным тоном:

– Дело ясное, у выигравшего руки длиннее.

Затем по поводу следующей пары:

– Ну, как же вы не понимаете! Победитель более высокого роста.

В третьей паре у победителя были короткие руки, да и роста он был маленького. Мой сосед робким голосом отметил, что это несколько противоречит… ведь я, кажется, говорил…

Я перебил его уверенным тоном:

– Чего вы здесь не понимаете? Он хотя и маленький, но вес его больше.

Я чувствовал подъем духа и нисколько не сомневался, что дам безупречные объяснения исходам всех поединков… конечно, после окончания боя. Оглянувшись в зрительный зал, я увидел дух моего доброго знакомого химика-теоретика, плавающего над головами болельщиков, на лице духа было полное удовлетворение.

Что делать, в семье не без урода. Но, разумеется, не уроды делают погоду в науке. Подведение крепкого и доброкачественного фундамента под химию продолжается.