"Революция в физике" - читать интересную книгу автора (де Бройль Луи)3. Развитие теории Бора. Теория ЗоммерфельдаВ своем математическом выражении теория Бора обладала одним серьезным недостатком. Действительно, даже в наиболее простом случае атома водорода, она позволяла найти энергию стационарных состояний лишь для чисто кругового движения. Причина этого заключалась в отсутствии необходимых методов квантования, поскольку метод квантования действия, предложенный Планком, годился лишь для одномерного движения. Поэтому для дальнейшего развития теории Бора необходимо было найти методы квантования, применимые в общем случае многомерного движения. Эта задача была решена в 1916 г. почти одновременно Вильсоном и Зоммерфельдом. Они обратили внимание на то, что все механические системы, рассматриваемые в квантовой механике, относятся к классу квазипериодических систем с разделяющимися переменными. Системы такого рода характеризуются периодическим изменением всех переменных, хотя величины этих периодов, вообще говоря, отличны друг от друга. Более того, надлежащим выбором этих переменных интеграл действия удается разбить на ряд интегралов, каждый из которых зависит только от одной переменной. Проводя в каждом из этих интегралов интегрирование по полному периоду соответствующей переменной и приравнивая каждый из них произведению постоянной Планка на целое число, получаем, очевидно, условия квантования для случая систем со многими степенями свободы. В частном случае одной степени свободы они переходят, как легко видеть, в условие квантования Планка. Метод квантования Вильсона – Зоммерфельда, который мы только что описали в общих чертах, позволяет в принципе разрешить все задачи, стоящие перед теорией атома Бора. Практически же в случае более или менее сложного атома задача, как и прежде, остается, строго говоря, неразрешимой. Но это связано уже не с отсутствием необходимых правил квантования, а с математическими трудностями, возникающими при решении уравнений движения. Зоммерфельд использовал предложенный им метод для решения более сложных задач теории атома, которые оказались не под силу ранней теории Бора. Прежде всего, он показал, что учет эллиптичности электронных орбит в атоме водорода не изменяет выражений для энергии различных стационарных состояний и, следовательно, абсолютно не сказывается на результатах, полученных Бором. Далее он показал, что более строгий учет движения электронов приводит к замене формул типа Бальмера другими, более точно описывающими истинное расположение спектральных линий оптического спектра и совпадающими с найденными ранее эмпирическими формулами Ридберга и Ритца. Но наибольший успех завоевала, разумеется, его теория тонкой структуры линий. Тщательное изучение спектра водорода, проведенное с помощью спектрографов, обладающих высокой разрешающей способностью, показало, что некоторые спектральные линии оказываются не простыми, а имеют более тонкую структуру и сами состоят из ряда очень близко друг от друга расположенных линий. Однако формулы Бальмера и другие, теоретически найденные Бором, не учитывали этой тонкой структуры линий. Тогда Зоммерфельд высказал предположение, что тонкая структура спектральных линий связана с релятивистскими эффектами и для учета ее необходимо вместо уравнений Ньютона воспользоваться уравнениями релятивистской механики Эйнштейна. И действительно, проведенные им расчеты показали, что учет релятивистских поправок приводит к расщеплению некоторых энергетических уровней. Иначе говоря, некоторые спектральные термы водорода, найденные Бором, распадаются на два, хотя и очень близких между собой, но все же отличных друг от друга спектральных терма. Это, очевидно, и объясняет явление тонкой структуры. Вычисленное Зоммерфельдом значение разности частот, соответствующих линиям дублета серии Бальмера, оказалось в достаточно хорошем согласии с экспериментальными данными. Обнадеженный этими успехами Зоммерфельд попытался также объяснить тонкую структуру рентгеновских спектров, что имело еще большее значение, чем интерпретация оптических спектров, поскольку в рентгеновских спектрах наблюдаются дублеты, легко разрешимые для всех элементов таблицы Менделеева. Некоторые из этих дублетов, называемые правильными дублетами, обнаруживают по мере перехода от одного элемента к другому, определенные закономерности. В частности, разность частот, соответствующая линиям одного дублета, быстро растет с увеличением атомного номера элемента, приблизительно как его четвертая степень. Обращение к релятивистским уравнениям движения вместе с найденными им условиями квантования позволило Зоммерфельду объяснить как причину возникновения этих дублетов, так и указанную выше зависимость разности частот от атомного номера. В частности, расположение дублетов серии Замечательные результаты, полученные Зоммерфельдом и опубликованные в 1916 г., явились полным подтверждением справедливости как квантовых методов, так одновременно и релятивистской динамики и привлекли к квантовой теории всеобщее внимание. Но более глубокий анализ этой теории обнаружил в ней много недостатков. В частности, последовательное применение используемых в этой теории (которая в настоящее время известна как старая квантовая теория) принципов и методов встречает на своем пути определенные трудности принципиального характера. Но даже безотносительно к этим трудностям общего характера теория Зоммерфельда может вызывать возражения более частного порядка. Прежде всего, тонкая действительная структура оптического и рентгеновского спектров носит более сложный характер, чем это следует из теории Зоммерфельда. Полученная им картина спектральных линий, хотя и более полная, чем у Бора, все же гораздо беднее той, которая наблюдается в действительности. Это оказывается очень серьезной трудностью, ибо теория Зоммерфельда не оставляет места для введения этих дополнительных термов, существование которых неоспоримо доказано экспериментом. Полнота и общность используемых методов не допускают, казалось бы, дальнейшего обобщения теории. Правда, Зоммерфельду удалось учесть эти дополнительные термы, введением некоторого дополнительного квантового числа, названного им внутренним квантовым числом. Однако оно было введено весьма искусственно и никак не следовало из самой теории. Только сделанное позже открытие собственного магнитного момента электрона позволило оправдать и объяснить введение этого нового квантового числа. Таким образом, теория Зоммерфельда оказалась неспособной дать достаточно полное объяснение тонкой структуры спектральных линий. Но предсказание ее относительно дублетов в оптической и рентгеновской областях спектров, казалось, полностью оправдалось. К сожалению, проведенный позднее тщательный анализ структуры спектров показал, что совпадение не такое уж хорошее. Оказалось, что каждое устойчивое состояние атома характеризуется целой совокупностью квантовых чисел. Если это учесть, то мы приходим к следующему несколько странному выводу: теория Зоммерфельда точно предсказала дублеты серии Бальмера и рентгеновских спектров. Однако действительное положение их не совпадало с тем, которое следовало из теорий. Невозможно было приписать успех теории Зоммерфельда просто счастливой случайности и все же чувствовалось, что в этой теории что-то не так. Лишь теория Дирака, приняв во внимание новые свойства электрона, поставила все на свои места, сохранив все главные результаты теории Зоммерфельда. Таким образом, выяснилось, что направление мысли этого замечательного физика было совершенно правильным. Но в то время, когда он развивал свою теорию, квантовые представления, с одной стороны, и 'наши знания об электроне, с другой, не были еще достаточно полны для того, чтобы позволить ему окончательным образом завершить свое построение. |
||
|