"Революция в физике" - читать интересную книгу автора (де Бройль Луи)Глава VIII. Волновая механика1. Основные идеи волновой механикиВ 1923 г. стало почти ясно, что теория Бора и старая теория квантов лишь промежуточное звено между классическими представлениями и какими-то очень новыми взглядами, позволяющими глубже проникнуть в исследование квантовых явлений. В старой квантовой теории условия квантования в каком-то смысле чисто внешним образом накладывались на результаты классической теории. Существенно разрывная природа квантования, которая выражалась целыми числами, так называемыми квантовыми числами, находилась в разительном противоречии с непрерывной природой движений, описываемых старой динамикой, как ньютоновой, так и эйнштейновой. Стало совершенно очевидно, что требуется построить новую механику, где квантовые идеи войдут в самую основу построения, а не будут добавлены под конец, как в старой теории квантов. И любопытно, что эта программа начала осуществляться почти одновременно двумя совершенно различными путями в работах ученых, наклонности которых по существу были совершенно различны. Так были созданы волновая механика, с одной стороны, и квантовая механика, с другой. На первый взгляд казалось, что обе теории совершенно противоположны и по внешнему виду и по применяемому формализму. Эти теории, такие разные по виду, следует на самом деле считать одними и теми же, потому что каждая из них есть лишь перевод другой на иной математический язык. Эти столь различные вначале попытки построить новую механику, по-настоящему насыщенную квантовыми понятиями, в конце концов слились в единое целое, в теорию, которая может быть названа новой квантовой теорией. Рождение волновой механики (1923 г.) немного опередило квантовую механику (1925 г.). Кроме того, первая оказалась лучше подготовленной к применению математического аппарата. Прежде всего хотелось бы обрисовать причины, которые привели в 1923…1924 гг. к установлению основных идей волновой механики. Открытый к этому времени эффект Комптона и изучение фотоэффекта рентгеновских лучей лишний раз замечательно подтверждали представление Эйнштейна о световых квантах. Теперь уже едва ли можно было оспаривать дискретную природу излучения и существование фотонов. Следовательно, с еще большей остротой встала грозная дилемма: что такое свет – волны или частицы? Хочешь не хочешь, а для полного описания свойств излучения нужно было применять поочередно картину то волн, то частиц. Соотношение Эйнштейна между частотой и энергией, введенное им на основе его теории фотонов, ясно показало, что этот дуализм излучения неразрывно связан с самим существованием квантов. Тогда возникает законный вопрос, не связан ли этот странный дуализм волн и частиц, примером которого так замечательно и несомненно явился свет, с глубокой и скрытой природой кванта действия? Не следует ли ожидать, что двойственность такого типа обнаружится везде, где только появляется постоянная Планка. Но тогда почти сам собой возникает вопрос: поскольку свойства электрона в стационарном состоянии атома описываются с помощью кванта действия, не можем ли мы предположить, что и электрон так же двойствен, как и свет? На первый взгляд такая идея показалась очень дерзкой. Ведь мы всегда представляли себе электрон в виде электрически заряженной материальной точки, которая подчиняется законом классической динамики (улучшенным в некоторых случаях релятивистскими поправками, которые ввел Эйнштейн). Электрон никогда явно не проявлял волновых свойств, таких, скажем, какие проявляет свет в явлениях интерференции и дифракции. Попытка приписать волновые свойства электрону, когда этому нет никаких экспериментальных доказательств, могла выглядеть как ненаучная фантазия. И тем не менее, как только возникла идея, что электрон, возможно, обладает такими свойствами, и не только электрон, но и вообще материальные частицы, так в голову начали приходить разные беспокойные соображения. Мы объяснили в первой главе, каким образом теория Якоби позволяет в классической динамике, сгруппировать возможные траектории материальных точек в заданном поле так, что траектории каждой группы напоминают лучи волн, распространяющихся по законам геометрической оптики. Этот замечательный параллелизм позволил рассматривать принцип наименьшего действия как одну из форм принципа Ферма. Несомненно, это формальное сходство между способами описания динамики и геометрической оптики не ускользнуло от такого блестящего математика, как Гамильтон. Однако, по-видимому, он не пытался придать этому физического смысла. Кроме того, этому препятствовали некоторые обстоятельства. Во-первых, и прежде всего, теория Якоби установила связь между распространением волны и группой возможных траекторий данной частицы. Однако согласно классическим представлениям частица в любом физически осуществляющемся случае описывает совершенно строго определенную траекторию. Группа же возможных траекторий – это абстракция, рассматривать которую математик, конечно, имеет полное право, физик же, казалось бы, не должен придавать ей какой-либо конкретный смысл. Во-вторых, некоторое расхождение в математической форме, по-видимому, указывало на то, что движение частицы нельзя на деле физически сопоставить с распространением волны. Если приравнять скорость частицы и скорость волны, то мы столкнемся с неприятным фактом: эти две скорости по-разному войдут в формулировку принципов Мопертюи и Ферма соответственно. И хотя эти трудности были хорошо известны, но появление тех новых идей, о которых мы уже говорили, придавало волнующую остроту мысли о том, что в классической аналитической механике формальная аналогия между траекториями частиц и световыми лучами устанавливается через посредство понятия действия, т е. в точности того самого понятия, которое послужило основой для введения квантов. Не подтверждает ли это в самом деле ту мысль, что квант действия служит соединительным звеном между корпускулярным и волновым представлениями о материальных частицах? И, наконец, еще одно указание. Если правда, что электрон в макроскопических процессах всегда ведет себя как обычная частица, какие есть основания при описании поведения электрона внутри атома навязывать чуждые ему условия квантования, в которых появляются целые числа? Такой способ ограничения классической динамики, когда она применяется к электрону, ясно говорит о ее неполноте и указывает на то, что свойства электрона не всегда такие, как у простой частицы. Если вдуматься, то привлечение целых чисел для характеристики стационарных состояний атомных электронов оказывается уже весьма симптоматичным. В самом деле, мы часто встречаемся с целыми числами в тех разделах физики, где рассматриваются волны: в теории упругости, акустике, оптике. Они появляются при описании стоячих волн, интерференции, резонанса. Поэтому вполне допустимо предположить, что интерпретация условий квантования может привести к волновой точке зрения на электроны внутри атома. Таким образом, попытаться приписать электрону или вообще всем частицам, подобно фотонам, двойственную природу, наделить их волновыми и корпускулярными свойствами, связанными между собой квантом действия, – такая задача представлялась крайне необходимой и плодотворной. |
||
|