"Большая Советская Энциклопедия (ВЗ)" - читать интересную книгу автора (БСЭ БСЭ)
Взрывные работы
Взрывны'е рабо'ты, работы в народном хозяйстве, выполняемые воздействием взрыва на естественные (горные породы, древесина, лёд) или искусственные (бетон, каменная и кирпичная кладка, металлы и др.) материалы с целью контролируемого их разрушения и перемещения или изменения структуры и формы. В. р. осуществляются с помощью взрывчатых веществ (ВВ) и средств взрывания, создающих начальный импульс для возбуждения взрыва ВВ (капсюли-детонаторы с огнепроводным шнуром, электродетонаторы), а также передающих начальный импульс на требуемое расстояние (например, детонирующий шнур ). Для размещения ВВ внутри разрушаемого объекта (заряжания) предварительно создаётся полость (шпур , скважина , камера), как правило, бурением , поэтому совокупность процессов для выполнения взрывов часто называют буро-взрывными работами. Дозированное количество ВВ, помещённое в полость или на поверхность разрушаемого объекта и снабженное средством взрывания, называется зарядом .
Область применения В. р. обширна, наибольшего объёма они достигают в горном деле: для сейсмической разведки полезных ископаемых; при вскрытии месторождений (например, направленные взрывы на выброс и сброс); при добыче твёрдых полезных ископаемых взрывная отбойка отделяет породу от горного массива, попутно дробя и перемещая её. В строительстве В. р. производят для планировки строительных площадок, рыхления мёрзлых и скальных грунтов, удаления валунов и пней, для образования выемок, котлованов, насыпных и камненабросных плотин, для сооружения дорожных и гидротехнических тоннелей, разрушения временных перемычек и др. В. р. используются при реконструкции для обрушения подлежащих сносу зданий и сооружений, разрушения фундаментов оборудования внутри действующих цехов. В водном хозяйстве В. р. выполняются для углубления дна водоёмов и фарватеров рек, спрямления и очистки русла рек, уничтожения порогов и перекатов, ликвидации заторов льда в период осеннего ледостава, пропуска льда под мостами, охраны от льда сооружений и ликвидации ледяных заторов в период весеннего ледохода и т.п. В полярных условиях В. р. используются для разрушения ледяных полей и торосов, освобождения вмёрзшего в лёд судна и др. В металлургической промышленности В. р. проводят для упрочнения металла, штамповки сложных деталей из листа, резки и сварки металла (см. Взрывное упрочнение металла , Взрывное штампование , Взрывная сварка ), установки заклёпок в труднодоступных местах, очистки литья от окалины и ржавчины, разрушения «козлов» — глыб застывшего металла, дробления шлаков и разделки крупного металлолома. В химической промышленности В. р. служат для корчёвки пней — сырья канифольно-скипидарных заводов. В сельском и лесном хозяйствах применяют валку деревьев взрывом для образования защитных полос, предотвращающих распространение лесных пожаров; В. р. используют: для подготовки пахотных площадей расчисткой их от камней, пней и кустарников; глубокой вспашки; рытья ям под посадку плодовых деревьев; осушения заболоченных мест взрыванием водонепроницаемого слоя; образования канав при оросительных и осушительных работах. В нефте- и газодобывающей промышленности В. р. ликвидируют аварии бурового инструмента; повышают дебит нефти из пласта путём взрывания торпед в скважинах; воздвигают искусственные дамбы и острова в местах подводной добычи; создают подземные хранилища нефти методом уплотнения глинистых грунтов взрывом. Взрывы применяются для ликвидации пожаров нефтяных и газовых скважин.
Впервые в мирных целях ВВ были применены в 1448—72, когда взрывом пороховых зарядов было расчищено от камней и порогов русло р. Неман. В. р. с применением пороха для добывания руд, по свидетельству президента Берг-коллегии И. Шлаттера (современник М. В. Ломоносова), впервые были проведены в России (1617) и получили распространение в Европе: в Силезии (1627), Чехии (1629), Гарце (1632), Саксонии (1645), Англии (1670), Франции (1679). Более широкому развитию В. р. способствовали: изобретение русским учёным П. Л. Шиллингом (1812) электрического способа взрывания, создание передвижных бурильных машин (1861) и буровых станков, изобретение динамита (1860), открытие тротила (1863) и взрывчатых свойств смеси аммиачной селитры с углеродистыми веществами, выпуск капсюлей-детонаторов (1867). Замена в динамитах всё большей части нитроглицерина аммиачной селитрой, снижая стоимость ВВ и уменьшая опасность обращения с ними, оказала влияние на увеличение объёмов В. р. и улучшение технологии их выполнения. С середины 19 в. получают широкое распространение В. р. для ликвидации ледяных заторов (р. Нева, 1841), углубления фарватеров (р. Буг, Днепровский лиман, 1858, и р. Нева, 1860), корчёвки пней (под Петербургом, 1873), разрушения подводных рифов (Нью-Йоркская гавань, 1885), расчистки лесных участков под пахотные площади (Иркутская губерния, 1913). Возрастание масштабов горного производства в начале 20 в., особенно с развитием открытого способа разработки, потребовало увеличения глубины заложения и величины зарядов ВВ; для этого донную часть глубоких (5—6 м ) шпуров взрывами небольших зарядов расширяли до придания ей формы котла вместимостью несколько десятков кг (так называемые котловые заряды, примененные в 1913 при добывании железных руд в Криворожье). С 1926 на карьерах СССР применяется метод камерных зарядов (массой до нескольких тысяч т ВВ), размещаемых в подземной горной выработке (камере), которую проходят из шурфов, штолен и т.д. Благодаря увеличению количества ВВ на единицу объёма взрываемой горной породы (при котловых и камерных зарядах) стало возможным не только дробление пород, но и выброс их с образованием готовых выемок — траншей, каналов, котлованов. Приоритет в развитии метода взрывания камерных зарядов на выброс принадлежит СССР. Масштаб таких взрывов непрестанно возрастал: 257 т ВВ для образования железнодорожной выемки на Бархатном перевале в 1933; 1808 т ВВ для строительства разрезной траншеи объёмом 800 тыс. м3 при вскрытии Коркинского месторождения угля в 1936; 3100 т ВВ с образованием канала длиной 1150 м для отвода р. Колонга за пределы шахтного поля Покровского рудника (март1958); 5300 т ВВ для первой очереди камненабросной селезащитной плотины объёмом 1670 тыс. м3 вблизи г. Алма-Ата (октябрь 1966) и др.
Камерные заряды получили широкое распространение и при подземной разработке мощных залежей крепких руд системами с минной отбойкой в Криворожье (заряды от 100 до 5000 кг размещаются по возможности равномерно в плоскости отбойки); помимо этого, камерные заряды применяют при разработке целиков и при ликвидации подземных пустот обрушением потолочины. Разнообразному применению метода камерных зарядов и его совершенствованию способствовали методы расчёта величины таких зарядов, разработанные М. М. Фроловым и М. М. Боресковым на основе опыта минной войны при защите Севастополя (Крымская кампания 1853—1856) и позднее развитые в работах Г. И. Покровского (50-е гг. 20 в.). Для экспериментальной проверки влияния положения центра тяжести перемещаемого массива на эффективность взрывов на выброс АН СССР в 1957 выполнены опытные взрывы зарядов от 0,1 до 1000 т ВВ. Эти эксперименты были положены в основу расчёта зарядов выброса учётом силы тяжести и определения предельной глубины их заложения.
Совершенствование буровых станков позволило увеличить диаметр и глубину скважин на карьерах, появилась целесообразность отказа от сосредоточенных камерных зарядов и перехода к скважинным зарядам. В СССР этот метод впервые применен в 1927 при разработке крепких гранитов на строительстве Днепровской ГЭС и получил быстрое распространение на карьерах; с 1935 метод скважинных зарядов применяется при подземной разработке мощных рудных месторождений. Первоначально на карьерах применяли вертикальные скважины, располагаемые в один ряд, в этом случае равномерность дробления породы взрывом была недостаточной, и негабаритные куски, превышающие размеры ковша экскаватора, требовали вторичного взрывания. Совершенствование вторичного взрывания осуществлено резким уменьшением величины заряда и заполнением свободного пространства шпура водой (так называемый гидровзрывной способ), покрытием наружного заряда пластикатовым пакетом с водой или применением наружных зарядов с торцевой кумулятивной выемкой. Во всех случаях достигается значительное уменьшение радиуса опасного разлёта осколков. Вода в качестве среды, передающей энергию взрыва деформируемому объекту, и кумулятивные заряды нашли применение также при В. р. по металлу. Начиная с 1923 в СССР В. р. применяли для дробления крупных металлических деталей, в частности для резки листового металла; в дальнейшем эффективность резки была повышена применением ВВ в патронах с продольной кумулятивной выемкой.
Внедрение отбойки горных пород скважинными зарядами послужило первым шагом к интенсификации взрывного дробления за счёт уменьшения количества негабаритных кусков во взорванной горной массе. Развитие горной техники выдвинуло задачу получения равномерной кусковатости, позволяющей перейти на поточную технологию добычных работ. В СССР теоретические вопросы взрывного дробления впервые разрабатывались М. В. Мачинским (1933), Н. В. Мельниковым (1940) и О. Е. Власовым (1962); влияние свойств ВВ на различные формы работы взрыва исследовали М. А. Садовский и А. Ф. Беляев (1952), установившие зависимость дробления от полного импульса взрыва. Интенсификация взрывного дробления достигается: освоением повышающего длительность импульса короткозамедленного взрывания ; переходом к многорядному короткозамедленному взрыванию с масштабом взрыва, достигающим несколько млн. т ; совершенствованием схем короткозамедленного взрывания (использование кинетической энергии движения кусков взорванной породы на дополнительное дроблении при их соударении); рассредоточение скважинных зарядов осевыми воздушными промежутками, снижающими пиковое давление взрыва и увеличивающими длительность взрывного импульса; применением способа взрывания на частично неубранную от предыдущего взрыва горную массу, а также на высоту 2—3 уступов; расчленением заряда скважины на части, взрываемые с внутрискважинным замедлением ; наклонными зарядами, параллельными боковой поверхности уступа; попарным расположением сближенных скважинных зарядов, снижающих потери энергии на фронте взрывной волны; совершенствованием параметров расположения скважинных зарядов на уступе.
Из геометрических параметров при В. р. выявлено наибольшее значение соотношения между удалением заряда от свободной поверхности (так называемой линией наименьшего сопротивления) и расстоянием между одновременно взрываемыми зарядами; увеличение этого отношения, повышая градиент напряжений по фронту взрыва, способствует интенсификации дробления, уменьшение — отрыву породы взрывом по линии расположения одновременно взрываемых зарядов; сочетание последнего приёма с уменьшением максимального давления взрыва воздушными промежутками привело к разработке сначала в Швеции (1953), а затем в США, Канаде и СССР метода контурного взрывания , обеспечивающего достижение ровной поверхности отрыва породы по заданному профилю. Этот метод успешно применен при проведении подземных выработок (гидротехнические тоннели) и на открытых работах (гидротехнические каналы, дорожные выемки и др.). Особое место при подземной разработке угольных месторождений заняли вопросы так называемого беспламенного взрывания , обеспечивающего безопасное ведение В. р. в шахтах, опасных по газу и пыли.
Уменьшение опасности в обращении с ВВ было достигнуто разработкой в 1934 простейших ВВ в виде смесей аммиачной селитры (АС) с горючими добавками (динамоны в СССР) или с парафином (нитрамон в США). В 1941 твёрдую горючую добавку стали частично заменять жидкой (керосинит в СССР). В дальнейшем переход на гранулированные АС и жидкую горючую добавку повышенной вязкости (дизельное топливо — ДТ) привёл к созданию нового класса наименее опасных, хорошо сыпучих, пригодных для механизированного заряжания гранулированных простейших ВВ (игданит в СССР, АС — ДТ в зарубежных странах). За 10 лет объём потребления таких ВВ резко возрос и, в частности, в США к 1965 достиг 60% от всего количества промышленных ВВ; они облегчили решение задачи механизации заряжания ВВ как на открытых, так и на подземных работах, в частности за счёт использования сжатого воздуха; разработаны пневмоустройства для смешения АС и ДТ, их транспортирования и заряжания (см. Зарядное устройство ). Липучесть гранул АС — ДТ, увеличение плотности их упаковки за счёт скорости вдувания в зарядную полость обеспечили возможность механизированного заряжания даже восстающих скважин (расположенных под углом 90°) с заполнением ВВ всего сечения скважины. Вслед за игданитом (АС — ДТ) созданы разнообразные сыпучие гранулированные ВВ заводского изготовления, пригодные для механизированного заряжания. Повышение плотности заряжания и концентрации энергии ВВ в единице объёма достигается применением водонаполненных взрывчатых веществ , первоначально примененных Н. М. Сытым на строительстве гидростанции в г. Фрунзе в 1943 (на 15 лет раньше, чем в США).
Метод образования подземных полостей при помощи В. р. обладает высокой перспективностью для разработки мощных залежей руд, расположенных на больших глубинах, путём применения ядерных взрывов; объёмная концентрация энергии в них достигает порядка 4000 Тдж/м3 (109ккал/л ), при которой для заложения ядерного заряда на глубину несколько сот м достаточно пробурить скважину. В результате взрыва происходит испарение окружающей породы с образованием полости, стенки которой нарушены трещинами значительной протяжённости; по мере снижения давления внутри полости стенки и свод её обрушаются, создаётся конус обрушения и полость заполняется взорванной породой. Последующее извлечение полезных компонентов руды может быть осуществлено методом подземного выщелачивания . При меньшей глубине заложения ядерного заряда процесс, подобно воронкообразующему действию взрыва химических ВВ, сопровождается вспучиванием поверхности, её разрывом, снопом выброса и образованием выемки; стоимость энергии, выделяемой ядерным устройством при его тротиловом эквиваленте свыше 50 тысяч т , примерно в 3 раза меньше по сравнению с ВВ на основе АС, потребный объём бурения в связи с исключительно высокой объёмной концентрацией энергии соответственно меньше, а потому при условии надёжной защиты от радиоактивных осадков метод перспективен при строительстве крупных каналов, акваторий, вскрытии глубокозалегающих рудных залежей.
Лит.: Кубалов Б. Г., Пути развития взрывного дела в СССР, М., 1948; Дашков А. Н., Взрывной способ образования котлованов под опоры контактной сети при электрификации железных дорог, М., 1959; Прострелочные и взрывные работы в скважинах, М., 1959; Акутин Г. К., Проведение выработок в мягких сжимаемых грунтах уплотнением их энергией взрыва, К., 1960; Ассонов В. А., Докучаев М. М., Кукунов И. М., Буровзрывные работы, М., 1960; Власов О. Е., Смирнов С. А., Основы расчета дробления горных пород взрывом, М., 1962; Докучаев М. М., Родионов В. Н., Ромашов А. Н., Взрыв на выброс, М., 1963; Мельников Н. В., Марченко Л. Н., Энергия взрыва и конструкция заряда, М., 1964; Подземные ядерные взрывы, М., 1965; Буровзрывные работы на транспортном строительстве, М., 1966; Друкованый М. Ф., Гейман Л. М., Комир В. М., Новые методы и перспективы развития взрывных работ на карьерах, М., 1966; Тавризов В. М., Ледокольные взрывные работы, М., 1967; Покровский Г. И., Взрыв, М., 1967; Взрывное дело. Сборники, в. 1—67, М., 1930—69.