"Журнал «Вокруг Света» №3 за 2004 год" - читать интересную книгу автора (Вокруг Света)Ярмарка идей: Мощность вне пределовДевиз капитана Немо – Mobilis in Mobile, или «Подвижный в подвижном», вполне применим к двигателям внутреннего сгорания (ДВС), чья работа обеспечивает движение транспортных средств. Когда же мы говорим о современных двигателях, составным частям которых придают дополнительную подвижность, смысл этого девиза становится более глубоким – система в целом получает возможность гибко и точно реагировать на предъявляемые требования. Вполне возможно, что историки будущего назовут XX век веком упущенных возможностей, поскольку в основном в этот период человечество жило за счет изобретений XIX столетия. Наиболее значительными из них стали двигатели – паровой, электрический и внутреннего сгорания. И даже ядерная силовая установка (инновация нашего времени) является, по сути, лишь паровой машиной, в которой угольная топка заменена реактором. Если же рассуждать с философских позиций, то и здесь созидательной деятельности в XX веке получилось меньше, чем разрушительной. В качестве примера достаточно сравнить разрывной артиллерийский снаряд, самое эффективное оружие XIX века, с термоядерной бомбой. На протяжении последних десятилетий эволюция безжалостно отсеяла множество альтернатив традиционному типу двигателя: он остался верен схеме, выкристаллизованной немцем Николаусом Августом Отто в конце XIX столетия. Немцы так и продолжают именовать его Otto Motor, хотя точнее было бы назвать «4-тактный ДВС с возвратно-поступательным движением поршней», имея в виду число перемещений поршня в рамках одного полного цикла. Первый такт – впуск горючей смеси в цилиндр, при котором поршень опускается. Второй – сжатие смеси при движении поршня вверх. Третий – воспламенение смеси разрядом электрической свечи и движение поршня вниз под напором расширяющихся продуктов горения (так называемый рабочий ход). Четвертый – выталкивание отработавших газов в атмосферу поднимающимся поршнем. Принципиальные детали такого мотора – блок и головка цилиндров, поршни, шатуны, коленчатый вал, газораспределительный механизм и другие – не меняют своего назначения десятилетиями. Означает ли это, что ДВС замер в своем развитии? Особенность классического ДВС такова, что поршни в его цилиндрах периодически останавливаются и вновь разгоняются. Например, в режиме максимальной мощности (5 000 об/мин) каждый из четырех поршней популярного вездехода ВАЗ-2121 «Нива» 10 тысяч раз в минуту разгоняется до скорости 21,5 м/сек и столько же раз полностью останавливается. Главный удар возникающих при этом сил и моментов принимает на себя кривошипно-шатунный механизм, а через него – блок цилиндров и картер двигателя. С ненужными вибрациями, доставляющими неудобства пассажирам и способными разрушить конструкцию мотора, борются посредством компенсации возникающих сил и моментов. Влияние на уровень вибраций двигателя оказывает расположение кривошипов коленчатого вала, число цилиндров и угол развала между их группами в V-и W-образных схемах, расстояние между соседними цилиндрами в группе. Наиболее уравновешенными являются рядные 6– и 8-цилиндровые, V-образный 12-цилиндровый и оппозитный 6-цилиндровый двигатели. Так, сбалансированность рядной «шестерки», на которой в 1911 году Генри Ройс применил гаситель крутильных колебаний коленчатого вала, позволила представителям компании Rolls-Royce использовать эффектный рекламный ход – на радиатор заведенного автомобиля они устанавливали ребром золотой соверен, и монета не падала. В истории автомобильных двигателей немало громких имен, но Отто, Дизель и Ванкель признаются наиболее значимыми. В 1893 году Рудольф Дизель изобрел мотор, способный работать на более тяжелых (и дешевых) фракциях перегонки и крекинга нефти. Если в моторе Отто смесь поджигается электрическим разрядом, то в дизеле – от сжатия ее поршнем, иными словами, самовоспламенением. Топливо для такого мотора, солярку, немцы называют Diesel. А топливо для обычного мотора – Benzin. Существует версия, что и название «бензин» происходит от фамилии изобретателя одного из первых самодвижущихся экипажей (1886 год) немца Карла Бенца. В ту пору бензин приобретали в аптеках, поскольку он являлся антисептическим средством. Феликс Ванкель запатентовал роторно-поршневой тип двигателя в 1934 году. В его корпусе овальной формы движутся не поршни на шатунах, а треугольный, с выпуклыми сторонами ротор. Он описывает внутри корпуса кривую, называемую эпитрохоидой, при этом его вершины, плотно прилегая к стенкам корпуса, образуют 3 отдельные камеры сгорания. В каждой из них последовательно происходит обычный 4-тактный цикл. Из-за отсутствия возвратно-поступательного движения такой мотор почти не вибрирует, а его рабочие обороты значительно выше, чем у поршневого ДВС. Единственная фирма, выпускающая автомобили с «ванкелем», – японская Mazda. Она довела конструкцию мотора Renesis до совершенства и в награду за упорство в 2003 году удостоилась Гран-при конкурса «Двигатель года». Присвоено оно двухсекционному, то есть с двумя роторами в отдельных корпусах, мотору. К каждому подведено по два впускных и по два выпускных трубопровода. Роторы обслуживают в общей сложности шесть форсунок – четыре во впускных трубопроводах и две непосредственного впрыска. При крошечном рабочем объеме 2x0,654 л двигатель развивает огромную мощность в 250 л. с. при 8 500 об/мин и имеет максимальный крутящий момент 216 Нм при 5 500 об/мин. «Скотину в Америке и Европе в старину кормили по-разному» – это приходит на ум, когда узнаешь, что HP, то есть horse power, вовсе не равна PS, то есть Pferdestarke, или, скажем, CV (cheval vapeur). И то, и другое, и третье переводятся как лошадиная сила. Зародилась эта величина в шахтах Великобритании и оценивала работу лошади за единицу времени: перемещение груза в 200 фунтов на 165 футов за минуту. Измерение мощности в «лошадях» – скорее дань традиции, поскольку существует общепринятая метрическая величина – киловатт (кВт). Один киловатт мощности равен 1,35962 л. с., но тот же киловатт равен 1,34102 американо-британской лошадиной силы HP. Более того, сегодня действуют шесть стандартов измерения мощности автомобильного двигателя. В США организация Society of Automotive Engineers (SAE) рекомендует измерять мощность двигателя без учета ее затрат на привод генератора, потерь в системе выпуска отработавших газов и прочих затрат, связанных с функционированием навесного оборудования. Второй важный показатель работы двигателя – крутящий момент, характеризует его способности по части вращения колес. В метрической системе крутящий момент измеряется в Ньютонах, умноженных на метр. Оба показателя – и мощность, и крутящий момент – приводятся в сочетании с числом оборотов коленчатого вала двигателя в минуту, при котором они достигаются. То или иное расположение цилиндров применяют, чтобы получить максимальную отдачу с каждой единицы площади, занимаемой мотором под капотом. Еще в начале 1980-х годов фирма Volkswagen создала так называемые V-образно-рядные двигатели VR6 и VR5 – компактные агрегаты с увеличенным числом цилиндров. Небольшой, 15°, развал между рядами цилиндров (обычно угол составляет 60 или 90°) позволил применить для них общую головку. Затем на основе этих разработок была спроектирована серия модульных W-образных двигателей, объединяющих под углом в 72° две цилиндро-поршневые группы от моторов VR-типа. Проблема заключалась в том, что на коленчатом валу примерно той же длины в этом случае размещалось вдвое больше шатунов, чем в VR-двигателе. Поэтому их пришлось делать тоньше. Шатун подвергается в двигателе наибольшим нагрузкам сжимающего, растягивающего и изгибающего вида, и слишком тонкие шатуны на повышенных оборотах начинают «поигрывать». В двигателе W16 колоссальной мощности в 1001 л.с. для спортивного Bugatti ЕВ16/4 Veyron влияние инерционных моментов на шатуны сократили, увеличив развал между двумя VR-rpyппaми до 90° и снизив скорость поршня до 17,2 м/с. Размеры двигателя при этом выросли, но все равно остались завидно малыми для агрегата с такими показателями: его длина 710, а ширина 767 мм. В быстроходных современных двигателях выпускные клапаны начинают открываться для отвода отработавших газов, когда те еще способны на полезную работу. И не успевает поршень вытолкнуть остатки продуктов сгорания из цилиндра, как открываются впускные клапаны. При этом часть отработавших газов смешивается с новой порцией топливовоздушной смеси, что ухудшает ее качество. Нежелательное на первый взгляд явление, называемое перекрытием фаз, оказывается, можно обратить во благо. Если оставить впускные клапаны открытыми подольше, в камеру сгорания попадет больше смеси. Это обеспечит более ровную, устойчивую работу двигателя на малых оборотах коленчатого вала, а при высокой частоте вращения улучшит его тяговые возможности. Задержка закрытия выпускных клапанов позволит на такте впуска завлечь обратно в цилиндр некое количество отработавших газов, чтобы вновь пустить их в дело, что окажет благоприятное влияние на показатели токсичности выхлопа. Итак, да здравствуют приспособления, изменяющие режим работы впускных и выпускных клапанов и увеличивающие длительность их открывания! Принцип действия таких «фазовращателей» состоит в дополнительном проворачивании распределительного вала вокруг его оси на несколько градусов. У компании BMW подобное устройство называется (в зависимости оттого, на одном или двух валах установлено) Vanos или Double Vanos. В 2001 году фирма внедрила еще более совершенное устройство – Valvetronic, продлевающее фазу открытия впускных клапанов за счет изменения плеча коромысел. Оно настолько улучшило газообмен, что позволило отказаться от анахронизма карбюраторной эпохи – дроссельной заслонки во впускном канале двигателя, регулирующей объем поступающего в цилиндр воздуха. Мотор с Valvetronic в среднем на 10% экономичнее своего «заслоночного» аналога и быстрее откликается на нажатие педали газа. Для получения наиболее оптимальных характеристик в широком диапазоне оборотов коленчатого вала современные двигатели оснащают также и впускными трубопроводами переменной длины. Отдаленно принцип действия такой системы напоминает печную трубу с заслонкой. Пока обороты коленчатого вала невелики, воздушный поток поступает через длинное колено, обеспечивая двигателю наилучшие тяговые возможности. На короткое колено переключаются при больших оборотах, и это увеличивает мощность. А компания BMW на моделях 735i/745i применяет и вовсе бесступенчатый регулятор впускного трубопровода, похожий на гигантскую улитку. Его длина варьируется от 231 до 673 мм. Цилиндрический воздухораспределитель способен менее чем за секунду повернуться в полости впускного трубопровода на 236°, изменяя тем самым его рабочую длину. С целью уменьшения массы двигателя впускные трубопроводы нередко изготавливают из полиамида. Оптимальное соотношение воздуха и бензина – 14,5:1 называют стехиометрическим. Поэтому чтобы «затолкать и сжечь» в цилиндрах больше бензина за единицу времени, приходится увеличивать и весовое содержание воздуха. Для этого используют специальные нагнетатели, среди которых наибольшее распространение получили турбонаддувы. В них для разгона насосного колеса используется энергия отработавших газов, вращающих турбину. Работу этих устройств также стараются оптимизировать. Например, изменяя геометрию лопаток турбины, а также направляя излишек отработавших газов в обход лопаток. Турбокомпрессору, как и другим деталям двигателя, тоже свойственна инерционность, ухудшающая характеристики двигателя «в низах» (то есть при малых оборотах). Явление получило название «турбояма». Для раскрутки турбины компания Saab на модели 9-3 использует такой прием: независимо от перемещения педали «газа» в начале езды в двигатель поступает дополнительная порция смеси. Поток отработавших газов ненадолго увеличивается, и они быстрее раскручивают механизм нагнетателя. Каким парадоксальным это ни покажется, но и поджечь топливно-воздушную смесь в цилиндре отнюдь не просто. Она может потухнуть. По этой причине в зоне свечи зажигания стараются уменьшить турбулентность смеси. Возможно и обратное – смесь самостоятельно детонирует, хлестнув по стенкам камеры сгорания, клапанам и поршню волной давления с разрушающей силой. На скорость сгорания влияет целый ряд параметров: температура, напряжение зажигания, качественный состав смеси и прочее. Конструкторы всегда мечтали приспособить двигатель к работе на обедненной смеси. В некоторых моторах весовое соотношение воздуха и бензина достигает 20:1 и даже 25:1. Это стало возможным с появлением системы впрыска, в которой форсунки распыляют порцию бензина непосредственно в камеру сгорания. Технология подсмотрена у дизельного двигателя. Запатентовавшая ее первой компания Mitsubishi (так называемый процесс GDI) предлагает пользоваться режимом сверхбедной (до 40:1) смеси для экономичной и экологичной езды в городском режиме. Впрыск топлива происходит после того, как поршень уже начал движение к верхней мертвой точке, попутно закручивая сжимаемый в полости цилиндра воздух. Благодаря особому гребню на рабочей поверхности (называемой днищем) поршня центр этого маленького смерча фокусируется возле свечи зажигания. Туда впрыскивается порция топлива и производится электрический разряд. Еще своеобразнее процесс протекает, когда в цилиндр на такте впуска распыляют предварительную, «пилотную» порцию топлива. Она смешивается с воздухом в ничтожной пропорции 60:1, попутно снижая температуру в цилиндре. Это уменьшает вероятность детонации. Затем происходят впрыскивание основной порции топлива и его воспламенение. Система GDI на 10—15% экономичнее моторов, оборудованных впрыском обычного типа. Новые горизонты открывает дизелям устройство непосредственного впрыска с форсунками, отличающимися высоким быстродействием – до 0,1 миллисекунды – вчетверо меньшим, чем прежние механические. В узле, запирающем их сопла, используется открытый в 1880 году Жаном и Пьером Кюри пьезоэффект: деформация пьезокерамического элемента под действием электрического напряжения. Компьютерное управление позволяет за один рабочий цикл произвести несколько впрыскиваний топлива. Чтобы избежать жесткого процесса сгорания, в цилиндр производится так называемый «пилотный» впрыск (один или несколько), создающий среду, готовую принять основную порцию топлива. После воспламенения основной порции в разогретый цилиндр может быть произведена еще пара коротких впрыскиваний топлива, для улучшения состава отработавших газов. Датчики отслеживают содержание самой «проблемной» составляющей в выхлопе – оксидов азота, которые могут уничтожаться разными способами – от дожигания непосредственно в цилиндрах дизеля до применения в системе выпуска отработавших газов специальных катализаторов, превращающих продукты сгорания в азот и воду. Единая для группы цилиндров топливная магистраль common rail позволяет держать наготове достаточный запас сжатого под высоким давлением (1 450—1 800 атм) топлива и оперативно выстреливать порции его через форсунки. Система иного рода, с индивидуальными насос-форсунками для каждого из цилиндров, обеспечивает еще более высокое давление впрыска. Оценка токсичности выхлопа производится по испытательным циклам, утвержденным Европейской экономической комиссией (ЕСЕ). 1 января 2005 года в Европе начнут действовать нормы токсичности Евро-IV. Напомним, что в нашей стране должны были вступить в силу нормы Евро-П, действовавшие в Европе с 1996 по 2000 год. Чем опасна каждая из составляющих этой таблицы. Оксид углерода, или, попросту, угарный газ, – бесцветный газ без вкуса и запаха, в объемной концентрации в воздухе всего 0,3% приводит к смерти человека. Углеводороды являются окислителями, раздражающими слизистую оболочку, некоторые из них к тому же канцерогенны. Оксиды азота перенасыщают почву, окисляют ее, способствуют появлению озона вблизи поверхности дороги, раздражают слизистую оболочку глаз, а, окисляясь до NO 2 , превращаются в ядовитый газ. Твердые частицы также являются канцерогенами, и если в бензиновых моторах их удается устранить полностью, то в дизелях, работающих на солярке, требуются дополнительные противосажевые фильтры. Особо сегодня регламентируют еще один продукт сгорания топлива – углекислый газ СO 2, способствующий развитию парникового эффекта в атмосфере. Автомобильные компании готовы к 2008 году, когда вступят в силу нормы Евро-V, ограничить его выбросы 140 г/км, а к 2012 году довести этот показатель до 120 г/км. Денис Орлов |
||||
|