"Диссертация рассеянного магистра" - читать интересную книгу автора (Левшин Владимир Артурович)

ДИССЕРТАЦИЯ РАССЕЯННОГО МАГИСТРА ОАЗИС

Напрасно, совершенно напрасно некоторые чересчур поспешные люди пытаются поймать меня на слове, — я не допустил никакой нелепости! Остров, куда мы прибыли, был в самом деле необитаем, хотя там нас и встречали местные жители. Дело в том, что это только один из бесчисленных островов здешнего архипелага. Люди на нём не живут, а приезжают в выходные дни на экскурсии с других островов. По-моему, тут всё ясно.

Так как мы пристали к берегу уже к концу дня, то все встречавшие нас вскоре разъехались по домам. И мы с Единичкой остались одни, как Робинзон с Пятницей.

Остров называется ОАЗИС. Название явно, по-моему, неудачное.

Ведь оазис — небольшой цветущий участок в пустыне.

А тут самый пустынный остров цветущего архипелага. Я бы назвал его Антиоазисом. Но, к счастью, мы разыскали табличку, на которой название острова расшифровывалось. Ну кто бы мог подумать, что ОАЗИС — это Остров Арифметических Загадок и Софизмов?!

— А что такое софизм? — спросила Единичка.

Я поразился её невежеству. Но всё-таки решил ничего не объяснять до тех пор, пока сам не узнаю, что это такое.

Неожиданно быстро стемнело, и все небо покрылось звёздами. Единичка как взглянула на это восхитительное зрелище, так и замерла. Она ведь впервые увидела звезды Южного полушария. Но я мигом разобрался во всех этих созвездиях. Потому что я не только математик, но и астроном. Ничего удивительного: ведь астрономия и математика — две самые древние и самые родственные науки.

— Видишь, — сказал я Единичке, — четыре яркие звёздочки? Этому созвездию дали красивое название: «Зодиак». Волшебное созвездие! Одна из четырех звёзд называется «Проксима», что по-русски означает «Далёкая». Она и в самом деле самая далёкая от Земли звезда. Свет от неё идёт к нам миллиард лет. А ведь от Солнца свет доходит до нас через 8 секунд.

Единичка стояла раскрыв рот и, по-моему, не слушала меня. Иначе она непременно стала бы возражать. Впрочем, возразить на это нечего.

Нам, однако, было не до звёзд. Надо было устраиваться на ночлег, а на этом оазисе — ни одного дома, ни одной палатки, где можно укрыться от диких зверей, которые здесь водятся, наверное, в изобилии. Следовало немедленно приступать к постройке дома (благо деревьев здесь непочатый край) и закончить его до захода луны. Поэтому я решил не строить четырехстенного дома (это слишком долго), но и двухстенный меня не устраивал (это некрасиво). Стало быть, ничего не оставалось, как строить трехстенный дом. Спилив три дерева и обработав их стволы, мы с Единичкой сложили на земле треугольник. Фундамент был готов! Жаль, что все три ствола были разной длины, и треугольник получился разносторонний.

Мы с Единичкой так устали, что достройку дома решили отложить на завтра, а пока что укрыться от диких зверей внутри нашего треугольника.

И тут капризная Единичка заявила, что хочет иметь отдельную комнату, и потребовала, чтобы я перегородил наше жильё. Ну, против комфорта я никогда не возражаю. Поэтому мы срубили ещё одно деревце для перегородки. Теперь оставалось подумать, как перегородить треугольник, — Единичка хотела, чтобы обе комнаты имели одинаковую площадь.

Она предложила поступить так: протянуть бревно из какой-нибудь вершины треугольника до середины противоположной стороны. Видимо, Единичка ещё не знала, что это значит провести медиану треугольника. Но какая же она чудачка! Ведь треугольник-то наш разносторонний! Поэтому медиана никак не может разделить его площадь пополам. Ведь полученные таким образом два треугольника не будут равными, значит, и площади у них разные!

Я предложил другой, правильный способ. Раз мы хотим разделить площадь точно пополам, надо проложить бревно по средней линии треугольника. Но и тут мне пришлось объяснять, что средняя линия треугольника — это отрезок прямой, который соединяет середины каких-либо двух сторон треугольника.

Единичка стала спорить и спорила до тех пор, пока не зашла луна. Стало так темно, что отличить медиану от средней линии не было уже никакой возможности. Поэтому мы улеглись спать в общей, большой «комнате» и проснулись, когда было уже совсем светло.

Позавтракав, мы пошли осматривать остров. Он оказался действительно полным загадок.

Началось с того, что Единичка заметила высоко на скале какие-то высеченные знаки. Она взяла мою подзорную трубу и стала читать вслух:

— Два плюс один равно трём.

Так вот в чём дело! Несомненно, перед нами был наскальный учебник арифметики древних народов! Я выхватил у Единички трубу и навёл её на то место, куда она смотрела. Но, представьте себе, я увидел там совсем не те числа, которые прочитала Единичка.

Вместо 2+1=3, там было высечено: 10+1=11.

Единичка, видно, как всегда, решила меня разыграть, и я очень обиделся.

Она снова взяла трубу и стала читать другую надпись: 6+4=10.

Я понял, что она продолжает меня поддразнивать, потому что на самом деле там было высечено не 6+4=10, а 110+100=1010.

Насмешница покачала головой и сказала:

— Ну разве может 110+100 равняться 1010? А вот 6+4 — это уж точно равно десяти!

В самом деле, как может 110+100 равняться 1010? Видимо, древние математики ещё не научились как следует считать. Я сразу потерял интерес к этим наскальным нелепостям. Мы двинулись дальше и наткнулись на огромный камень с надписью:

«Стой! Прежде чем продолжать путь, быстро выясни, делится ли это число на 11. Не выяснишь — лучше возвращайся назад!»

А число было вот какое: семизначное! По краям стояли шестёрки, а между ними пять единиц: 6111116 — шесть миллионов сто одиннадцать тысяч сто шестнадцать.

Единичка тут же принялась делить это число на 11. Но я только улыбнулся. Зачем делить, если известен простой признак делимости числа на 11? Надо сложить все цифры, стоящие на нечётных местах, затем то же проделать с цифрами, стоящими на чётных местах, и если суммы одинаковы, будьте уверены, что число на 11 делится.

Итак, на нечётных местах в числе 6111116 стоят: 6, 1, 1 и снова 6, что в сумме составляет 14 (6+1+1+6=14). А вот начётных местах стоят три единицы, они в сумме дают число 3. Но ведь 14 не равно трём, значит, все число на 11 делиться не должно. Тут и проверять нечего!

Но Единичка… Ах эта Единичка! Она утверждала, что у неё число на 11 разделилось и что 6111116, делённое на 11, равно 555556.

— Чепуха! — возразил я. — Не может быть! Оно не должно делиться.

— А вот и разделилось, — настаивала Единичка. — Попробуйте сами.

Но я только рукой махнул… Вскоре мы подошли к пещере. Вход в неё был такой крошечный, что в него и пролезть трудно. Но Единичка мигом всунула в него голову и закричала:

— Ой, как там темно! Я ничего не вижу! Вот так история! Как же мы будем двигаться в полной темноте? Но тут я увидел над входом объявление, от которого сразу повеселел:

ПЕЩЕРА ОСВЕЩАЕТСЯ ЭЛЕКТРИЧЕСТВОМ АВТОМАТИЧЕСКИ,если вы правильно ответите на следующий вопрос.

Напишите два десятизначных числа, из которых каждое содержит все десять цифр. Одно из них должно быть наибольшим из возможных, а второе — наименьшим.

Сущие пустяки! Я тут же написал наибольшее десятизначное число, состоящее из всех десяти цифр, — сперва цифру 9, аза ней все подряд в обратном порядке: 8, 7, 6, 5, 4, 3, 2, 1 и 0. Так я получил наибольшее число: девять миллиардов восемьсот семьдесят шесть миллионов пятьсот сорок три тысячи двести десять. Большего числа из десяти цифр не составить. Ну, а с наименьшим дело обстояло ещё проще. Надо было только написать те же цифры в обратном порядке: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9. Я так и поступил, но… лампочка в пещере почему-то не зажглась.

— А это потому, — вмешалась неугомонная Единичка, — что у вас получилось не десяти-, а девятизначное число. Ведь цифра нуль перед числом ровно ничего не значит!

Что ж, на этот раз она оказалась права. Я немедленно переставил нуль на конец числа: 1234567890. Да будет свет! Но света не было. Очевидно, авария на электростанции. Так мы в пещеру и не попали. Я расстроился, а тут ещё Единичка (хорош Пятница!) стала приставать со своими вопросами. Ей, видите ли, понадобилось узнать, сколько вообще можно написать десятизначных чисел из всех десяти цифр!

Этот вопрос требует длительного вычисления. Думаю, что на него может ответить только быстродействующая вычислительная машина. А так как я забыл её захватить, придётся Единичке подождать, пока я вычислю сам.