"Chiang, Ted - Seventy-Two Letters" - читать интересную книгу автора (Chiang Ted)When they reached LionelТs home, they promised the cook they would be in for dinner shortly and headed to the garden out back. Lionel had converted a tool shed in his familyТs garden into a laboratory, which he used to conduct experiments. Normally Robert came by on a regular basis, but recently Lionel had been working on an experiment that he was keeping secret. Only now was he ready to show Robert his results. Lionel had Robert wait outside while he entered first, and then let him enter.
A long shelf ran along every wall of the shed, crowded with racks of vials, stoppered bottles of green glass, and assorted rocks and mineral specimens. A table decorated with stains and scorch marks dominated the cramped space, and it supported the apparatus for LionelТs latest experiment: a cucurbit clamped in a stand so that its bottom rested in a basin full of water, which in turn sat on a tripod above a lit oil lamp. A mercury thermometer was also fixed in the basin. "Take a look," said Lionel. Robert leaned over to inspect the cucurbitТs contents. At first it appeared to be nothing more than foam, a dollop of suds that might have dripped off a pint of stout. But as he looked closer, he realized that what he thought were bubbles were actually the interstices of a glistening latticework. The froth consisted of homunculi: tiny seminal foetuses. Their bodies were transparent individually, but collectively their bulbous heads and strand-like limbs adhered to form a pale, dense foam. "So you wanked off into a jar and kept the spunk warm?" he asked, and Lionel shoved him. Robert laughed and raised his hands in a placating gesture. "No, honestly, itТs a wonder. HowТd you do it?" Mollified, Lionel said, "ItТs a real balancing act. You have to keep the temperature just right, of course, but if you want them to grow, you also have to keep just the right mix of nutrients. Too thin a mix, and they starve. Too rich, and they get over lively and start fighting with each other." "YouТre having me on." "ItТs the truth; look it up if you donТt believe me. Battles amongst sperm are what cause monstrosities to be born. If an injured foetus is the one that makes it to the egg, the baby thatТs born is deformed." "I thought that was because of a fright the mother had when she was carrying." Robert could just make out the minuscule squirmings of the individual foetuses. He realized that the froth was ever so slowly roiling as a result of their collective motions. "ThatТs only for some kinds, like ones that are all hairy or covered in blotches. Babies that donТt have arms or legs, or have misshapen ones, theyТre the ones that got caught in a fight back when they were sperm. ThatТs why you canТt provide too rich a broth, especially if they havenТt any place to go: they get in a frenzy. You can lose all of them pretty quick that way." "How long can you keep them growing?" "Probably not much longer," said Lionel. "ItТs hard to keep them alive if they havenТt reached an egg. I read about one in France that was grown till it was the size of a fist, and they had the best equipment available. I just wanted was to see if I could do it at all." Robert stared at the foam, remembering the doctrine of preformation that Master Trevelyan had drilled into them: all living things had been created at the same time, long ago, and births today were merely enlargements of the previously imperceptible. Although they appeared newly created, these homunculi were countless years old; for all of human history they had lain nested within generations of their ancestors, waiting for their turn to be born. In fact, it wasnТt just them who had waited; he himself must have done the same thing prior to his birth. If his father were to do this experiment, the tiny figures Robert saw would be his unborn brothers and sisters. He knew they were insensible until reaching an egg, but he wondered what thoughts theyТd have if they werenТt. He imagined the sensation of his body, every bone and organ soft and clear as gelatin, sticking to those of myriad identical siblings. What would it be like, looking through transparent eyelids, realizing the mountain in the distance was actually a person, recognizing it as his brother? What if he knew heТd become as massive and solid as that colossus, if only he could reach an egg? It was no wonder they fought. Robert Stratton went on to read nomenclature at CambridgeТs Trinity College. There he studied kabbalistic texts written centuries before, when nomenclators were still called baТalei shem and automata were called golem, texts that laid the foundation for the science of names: the Sefer Yezirah, Eleazar of WormsТ Sodei Razayya, AbulafiaТs Hayyei ha-Olam ha-Ba. Then he studied the alchemical treatises that placed the techniques of alphabetic manipulation in a broader philosophical and mathematical context: LlullТs Ars Magna, AgrippaТs De Occulta Philosophia, DeeТs Monas Hieroglyphica. He learned that every name was a combination of several epithets, each designating a specific trait or capability. Epithets were generated by compiling all the words that described the desired trait: cognates and etymons, from languages both living and extinct. By selectively substituting and permuting letters, one could distill from those words their common essence, which was the epithet for that trait. In certain instances, epithets could be used as the bases for triangulation, allowing one to derive epithets for traits undescribed in any language. The entire process relied on intuition as much as formulae; the ability to choose the best letter permutations was an unteachable skill. He studied the modern techniques of nominal integration and factorization, the former being the means by which a set of epithets--pithy and evocative--were commingled into the seemingly random string of letters that made up a name, the latter by which a name was decomposed into its constituent epithets. Not every method of integration had a matching factorization technique: a powerful name might be refactored to yield a set of epithets different from those used to generate it, and those epithets were often useful for that reason. Some names resisted refactorization, and nomenclators strove to develop new techniques to penetrate their secrets. Nomenclature was undergoing something of a revolution during this time. There had long been two classes of names: those for animating a body, and those functioning as amulets. Health amulets were worn as protection from injury or illness, while others rendered a house resistant to fire or a ship less likely to founder at sea. Of late, however, the distinction between these categories of names was becoming blurred, with exciting results. The nascent science of thermodynamics, which established the interconvertibility of heat and work, had recently explained how automata gained their motive power by absorbing heat from their surroundings. Using this improved understanding of heat, a _Namenmeister_ in Berlin had developed a new class of amulet that caused a body to absorb heat from one location and release it in another. Refrigeration employing such amulets was simpler and more efficient than that based on the evaporation of a volatile fluid, and had immense commercial application. Amulets were likewise facilitating the improvement of automata: an Edinburgh nomenclatorТs research into the amulets that prevented objects from becoming lost had led him to patent a household automaton able to return objects to their proper places. Upon graduation, Stratton took up residence in London and secured a position as a nomenclator at Coade Manufactory, one of the leading makers of automata in England. StrattonТs most recent automaton, cast from plaster of Paris, followed a few paces behind him as he entered the factory building. It was an immense brick structure with skylights for its roof; half of the building was devoted to casting metal, the other half to ceramics. In either section, a meandering path connected the various rooms, each one housing the next step in transforming raw materials into finished automata. Stratton and his automaton entered the ceramics portion. They walked past a row of low vats in which the clay was mixed. Different vats contained different grades of clay, ranging from common red clay to fine white kaolin, resembling enormous mugs abrim with liquid chocolate or heavy cream; only the strong mineral smell broke the illusion. The paddles stirring the clay were connected by gears to a drive shaft, mounted just beneath the skylights, that ran the length of the room. At the end of the room stood an automatous engine: a cast- iron giant that cranked the drive wheel tirelessly. Walking past, Stratton could detect a faint coolness in the air as the engine drew heat from its surroundings. The next room held the molds for casting. Chalky white shells bearing the inverted contours of various automata were stacked along the walls. In the central portion of the room, apron-clad journeymen sculptors worked singly and in pairs, tending the cocoons from which automata were hatched. The sculptor nearest him was assembling the mold for a putter, a broad-headed quadruped employed in the mines for pushing trolleys of ore. The young man looked up from his work. |
|
|