"Greg Egan - Foundations 4 - Quantum Mechanics" - читать интересную книгу автора (Egan Greg)ignored, but it was not at all clear how to synthesise the two into a coherent new
description of electromagnetism. In parallel with these revelations about light, physicists were grappling with the problem of the structure of atoms. Electrons had been discovered in 1897, and in 1911 Ernest Rutherford had found strong experimental evidence for the theory, first proposed by Hantaro Nagaoka, that atoms consisted of electrons orbiting a positively charged nucleus. The puzzle here was that charged particles moving in a circle emit electromagnetic waves, so the electron should have radiated away all its energy and plunged into the nucleus. Not even Planck's quantised photons could rule this out. In 1913, Neils Bohr proposed that the energy of the electrons themselves was quantised, and the existence of a minimum allowed energy kept them from falling into the nucleus. Bohr came up with a formula for the energy levels of the single electron in a hydrogen atom, constructed in order to agree with the observed spectrum of light emitted and absorbed by hydrogen. This spectrum consisted of a discrete set of sharply defined Egan: "Foundations 4"/p.6 frequencies, which could now be interpreted as the frequencies of photons whose energies matched the differences in energy between the allowed states of the electron. An electron could only move to a higher energy level by absorbing a photon that provided exactly the right amount of energy, and it could only drop back to a lower level by emitting a photon that carried the energy away again. This was by far the most successful model of atomic structure to date, but Bohr's formula was even more mysterious than Planck's. Why were only certain energy levels available to the electron? The first hint at an answer came from the suggestion by Louis de Broglie in 1924 confirmed spectacularly a few years later, in experiments showing that electrons fired at a crystal were reflected back most often in certain directions: those in which a wave that scattered off the regularly spaced atoms of the crystal would undergo constructive interference. Since then, interference effects have been demonstrated for all kinds of particles, including entire atoms. To examine de Broglie's idea more closely, we need to ask what the wavelength and frequency of the тАЬmatter waveтАЭ associated with a particle should be. One reasonable starting point is the relationship that worked so successfully for Planck with photons: E=h F. Since F is the frequency of the wave (the number of oscillations per second), the period of the wave, the time each oscillation takes, is: T = 1/F = h/E (2) Since the wave for a photon is moving forward through space at the speed of light, c, each cycle is spread out over one wavelength: L = cT = c h/E |
|
|