"Hogan, James P - Every Child Is Born A Scientist" - читать интересную книгу автора (Hogan James P)


"Thank you. Okay-roll it." Borel straightened up and assumed a posture with his hands high, near his shoulders. The clapperboard echoed. "Action."

"The black hole," Borel began, speaking in the firm, resonant tones of the professional. "Strange regions of space where matter and energy are lost forever without trace, and time itself stands still. We have traced the history of black holes through from early speculations all the way to the confirmed realities of the present day. Scientists can now draw for us an incredible picture of the bewildering laws of an unfamiliar physics, that dominate these mysterious bodies. But despite all this new knowledge, unexpected riddles continue to emerge. The black hole is still, and will continue for a long time to be, one of the most perplexing phenomena known to man."

Borel began walking slowly across the front of the backdrop toward Zimmermann.

"To give you an idea of the kinds of riddle that investigators into black-hole physics are meeting today, let me introduce Professor Heinrich Zimmermann of 1SF, Director of Joliot-Curie and perhaps one of the most distinguished physical astronomers of our time.

"Professor, the receiver that we saw outside is collecting radiation from the vicinity of a black hole in space. Down here you are analyzing the information that the computers have extracted from that radiation. Could you summarize for us, please, what you are finding and what new questions you are being forced to ask?"

By now Zimmermann had been through this routine three times.

"The receiver is at this moment trained on a binary system known as Cygnus X-1," he replied. "A binary system is one in which two stars are formed very close to one another and orbit about a common center of mass under their mutual gravitational coupling. Most binary systems comprise two ordinary stars, each of which conforms to one of the standard classifications. Some binaries, however, contain only one normal, visible star, the second body being invisible. The so-called dark companion emits no light but can be detected by its gravitational influence on the visible star. In many cases, they are known to be neutron stars as described earlier in the program. In a number of confirmed instances, however, collapse of the companion body has continued beyond the point at which a neutron star is formed, which results in the condition of ultimate degeneracy of matter-a black hole. Cygnus X-1 is an example of precisely this."

"In other words, you have an ordinary star and a black hole orbiting each other as a stable system," Borel interjected.

"That is so. However, the system is not quite permanently stable. You see, the gravitational attraction of the black hole is strong enough for it to draw off gaseous material from the surface of the star. The system thus comprises three parts essentially: the visible star, the black hole, and a filament of stellar material that flows out of the former into the latter, connecting them rather like an umbilical cord. The filament spirals around the black hole as the particles Contained in it acquire energy and accelerate down the gravitational gradient. In a somewhat simplified Way, you might picture it as bathwater spiraling down Into the drain." He paused, allowing Borel to pose the next question.

"But straightforward as this might sound, it is producing results that you are having difficulty in explaining. Isn't that so?"

"Very true," Zimmermann agreed. "You see, the matter that is being drawn off of the visible star is extremely hot and therefore in a highly ionized state. In other words, it is made up of strongly charged particles. Now, charged particles in motion give rise to electromagnetic radiation; calculations predict that a characteristic spectrum of broadband radiation, extending up into the x-ray frequencies, should be observable as a halo around the black hole. Indeed, we do observe radiation of the general nature that we would expect. Precise analysis of the spectrum and energy distributions, however, reveals a pattern that is not at all in accordance with theory."

Zimmermann moved to one side and gestured toward the instrumentation panels behind them. "The equipment that you see here is being used for this kind of investigation. From here we can monitor and control the receiving equipment, direct the computers, and observe what they are doing.

"Many years of observations and measurements have enabled us to determine the characteristics of several black-hole binaries with sufficient accuracy for us to compute precisely a mathematical model that should give us the pattern of radiation that each should produce." He moved forward to indicate one of the monitor screens on the console. "In fact, this is a picture of the theoretical distribution pattern computed for Cygnus X-l." The screen showed a wavy green line, annotated with captions and symbols; it rose and fell in a series of peaks, valleys, and plateaus, like a cross-sectional view of a mountain range.

"This is what we should expect to see. But when we analyze the data actually received from Cygnus X-1 . . ." he touched a button to conjure up a second, red curve, "we see that there is a significant discrepancy." The screen confirmed his words. The red curve was of a different shape and lay displaced above the green curve; only in one or two places did the green rise high enough for the two to nearly touch.

"Both curves are to the same scale and plotted from the same origin," Zimmermann commented. "If our model were correct, they would be approximately the same. It means that the amount of radiation actually measured is much greater than that which can be accounted for by theory."

"Actual measurement shows more radiation than predicted," Borel repeated. "Where does the excess radiation come from?"

"That, of course, is what intrigues us," Zimmermann replied. "You see, there are only three objects in the vicinity-the star, the filament, and the black hole. We are quite confident that we know enough about the physics of ordinary matter-as exemplified by the star and the filament-to exclude them as possible sources. That leaves only the black hole itself. But how can a black hole produce radiation? That is the problem confronting us. You see, all our theories of physics, based on general relativity, tell us that nothing -matter, energy, radiation, information, or any kind of influence-can escape from a black hole. So how can the black hole be responsible for the extra energy that we detect as radiation? But there is nothing else there for it to come from.

"The answer to this question could have very far-reaching consequences." The camera pulled in for a close-up. "Let us ask the question: What happens to matter when it falls into a black hole? We know that it disappears completely from the universe of which we have any knowledge. Logically, one must conclude that it exists thereafter either in some other part of our own universe or in some entirely different universe. There would appear to be no other possibility. If you reflect for a moment on the implications of what I have just said, you will realize why it is that we get excited at the discovery of what could turn out to be a process operating in the reverse direction. Something that contemporary theory declares impossible is being observed to happen. Behind it, we see hints of a whole new realm of physical phenomena and laws, of which we must at present admit an almost total ignorance. And yet we have strong reasons to suspect that within this mysterious realm, things that we consider to be impossible could turn out to be commonplace."

Borel waited a few seconds to allow the professor's words time to take effect.

"I find this absolutely fascinating, and I'm sure the viewers do too," he finally said. "There are one or two questions about what you've said that I'd like to come back to in a moment. But before we do that, for the benefit of the more technically minded among those watching, I wonder if you would describe in a little more detail the exact function of each of the pieces of equipment that you have assembled behind us here."

"Okay. Cut." The director's voice called again. "That was good. We'll splice the rest of take 2 on from there to complete that sequence. That's all for today, everybody. I'd like all the people who are involved in tomorrow's outside shooting to stay on for a schedule update. Everyone else is free to enjoy the J-C nightlife. Thanks. See you all at dinner."

The arc lights went out and Zimmermann spent a few minutes discussing technical details with the direction team. Then he left the room, traced his way through to the door that gave access to one of the interdome connecting tubes, and followed the tube through to Maindome, which stood adjacent. From there he descended by elevator to emerge four levels below ground in the corridor that led to his office suite. His secretary was watering the plants in the outer office when he entered.

"Hi," she greeted with a freckled grin over her shoulder. "All through?"

"Hello, Marianne. Yes. I must confess I'm not terribly sorry either." He looked at what she was doing. "My goodness, look at the size of those plants already. I'm sure that even your fingers can't be that green. It must be the gravity." Casting a casual eye over the notes and papers on her desk, he inquired, "Anything interesting?" She turned and creased her face into a frown of concentration.

"Mellows called and said that the replacement photomultiplier has been fitted in C dome-he said you'd know what it was all about. Pierre's come down with a bug and is in sickbay; he won't be able to make the meeting tomorrow."