"James P. Hogan - Giants 5 - Mission to Minerva" - читать интересную книгу автора (Hogan James P)On the face of it, the situation seemed no different from that of, say, a
gambler's die, which from the rolling state could assume any of six discrete final states, each showing a different number. The mechanics of moving objects was well understood, and only inability to specify precisely the die's shape, mass, and motion prevented the outcome to be predicted reliably every time. In other words there was no mystery. The outcome was determined, but imperfect knowledge made it unpredictable. However, this was only another way of saying that the situations were not the same to begin with. At the quantum level, this was not so. The systems being investigated were identical in every way that could be established. Why, then, should they behave differently? Quantum objects acted as if they were everything at once while they were not interacting with their environment, but the instant they encountered another entity capable of pinning them downтАФfor instance, a detector in a measuring instrument designed to find out something about themтАФthey abruptly took on one from the available selection of possible states. Hardly surprisingly, such oddness did not sit lightly with beings accustomed to a world in which things knew what they were and continued to be so while nothing was looking at them. The scientific debate about the perplexing accumulation of quantum paradoxes raged through the first two decades of the twentieth centuryтАФbeginning, ironically, immediately following a series of confident assurances that everything of substance was known and science was effectively a closed book. But there could be no getting away from what the results of countless experiments seemed to indicate. The challenge was to account for them in a way that described what was "really" going on. Some refused to get embroiled in the issue at all, and instead took the view of science as being simply a pragmatic process for generating numbers to be compared with experimental results, beyond which nothing more could be said. For a long time the predominant view was that nothing really existed in any objective sense at all until an act of observation caused it to assume one of its possible sets of attributes ("states") randomly. Exactly what constituted an "observation" was a further source of contention, opinions covering the range of steps from any interaction with another quantum object, to the final registering of an impression upon a human consciousness. Others avoided the disturbingly mystical implications of this kind of approach by maintaining that the allegedly identical objects weren't really identical but differed in some subtle ways that eluded detection at the present time. The problem with this, however was that it required everything in the universe to be capable, just as subtly, of instantly influencing everything else, a notion which many considered to be every bit as mystical as anything else that was being said, if not more so. By the end of the twentieth century, the scientific world had come to terms with accepting that whatever answer they settled on was going to be bizarre by normal standards anyway, so they might as well get used to throwing away all preconceptions and focus purely on what the facts seemed to be trying to say. And what the facts said, when the formalism was taken at face value without imposing some arbitrary wave-function "collapse" that the mathematics said nothing about, was that the world showed evidence of being everything at once |
|
|