"Мифы о безопасном ПО: уроки знаменитых катастроф" - читать интересную книгу автора (Аджиев Валерий)

Мифы о безопасности ПО

Катастрофы с Ariane 5 и Therac-25, сами по себе беспрецедентные, конечно же не являются уникальными. Можно привести длинный список больших и малых инцидентов в системах, относящихся к классу mission-critical, произошедших по причине дефектов в программном обеспечении и проявившихся только в режиме эксплуатации. Конечно, большинство инцидентов так или иначе расследовалось и осмыслялось. К сожалению, специфика «ответственных» систем часто такова, что это осмысление не становилось достоянием всего программистского сообщества поэтому, неудивительно, что в разное время и в разных местах повторялись сходные ошибки. Соответственно, слишком многие приобретают специфические знания и опыт на практике, методом проб и ошибок, которые как лишний раз показывает разобранные инциденты обходятся дорого.

Что же может предложить в этом отношении наука? Только недавно общесистемные и общеинженерные дисциплины «Безопасность Систем» (System Safety) и «Управление Рисками» (Risk Management) начали настраиваться на ту выраженную специфику, которую имеют программно-аппаратные комплексы в контексте их разработки, эксплуатации и сопровождения. Крупнейший специалист в данной области профессор Вашингтонского Университета энси Левесон (Nancy Leveson) ввела даже специальный термин Safeware, который вынесла в название своей книги[8] пока единственной в мировой литературе, где систематически рассматриваются вопросы безопасности и рисков в компьютерных системах. В частности, в этой книге разбираются некоторые распространенные мифологические представления о ПО и связанных с ним безопасности и рисках, бытующие на фоне все более широкого использования сложных систем в потенциально опасных приложениях. Остановимся на некоторых из них.

О «дешевом и технологичном» ПО

Бытует мнение, что стоимость программно-аппаратных систем обычно меньше, чем аналоговых или электромеханических, выполняющих ту же задачу. Однако, это миф, если, конечно, не говорить о «голом» hardware и однажды оплаченном ПО, сработанном «на коленке». Стоимость написания и сертификации действительно надежного ПО очень высока; к тому же необходимо принимать во внимание затраты на сопровождение опять же такое, которое не подрывает надежности и безопасности. Показательный пример: только сопровождение относительно простого и не очень большого по объему (около 400 тыс. слов) программного обеспечения для бортового компьютера, установленного на американском космическом корабле типа Shuttle, стоит NASA 100 млн. долл. год.

Следующий миф заключается в том, что ПО при необходимости достаточно просто модифицировать. Однако, и это верно только на поверхностный взгляд.

Изменения в программных модулях легко выполнить технически, однако трудно сделать это без внесения новых ошибок. Необходимые для гарантий безопасности верификация и сертификация означают новые большие затраты. К тому же, чем длиннее время жизни программы, тем более возрастает опасность вместе с изменениями внести ошибки например, потому, что некоторые разработчики с течением времени перестают быть таковыми, а документация редко является исчерпывающей. Оба примера что с Ariane 5, что с Therac-25 вполне подтверждают эту точку зрения. Между тем, масштабы изменений в ПО могут быть весьма велики. Например, ПО для космических кораблей типа Shuttle[9] за 10 лет сопровождения, начиная с 1980 г., подверглось 14-ти модификациям, приведшим к изменению 152 тысяч слов кода (полный объем ПО 400 тысяч слов).

Необходимость модернизации ПО диктовалась периодическим обновлением аппаратной базы, добавлением функциональности, а также происходило по причине необходимости исправления выявленных дефектов. По оценке независимых экспертов, эти модификации поначалу не сопровождались должными процедурами по поддержке безопасности, однако, случившаяся в 1986 г. авария с кораблем Challenger, которая хотя и произошла по причинам, не связанным с ПО, послужила толчком к пересмотру всей политики NASA в области безопасности, затронув и область ПО.

Наконец, вряд ли справедливо мнение, что все более входящий в практику принцип повторного использования ПО дает повышенные гарантии безопасности.

Мысль о том, что использование имеющего длительную историю и уже зарекомендовавшего себя с положительной стороны модуля, равно как и «коробочного» продукта, дает гарантии отсутствия в нем ошибок, весьма естественна с точки зрения «здравого смысла» и способна притупить бдительность. На самом деле повторное использование программных модулей может и понизить безопасность по той простой причине, что данные модули изначально разрабатывались и отлаживались для использования в ином контексте, а спецификация обычно не дает исчерпывающего отчета о всех видах возможного поведения модуля (произошедшая с Ariane 5 авария имеет основной причиной именно повторное использование модуля с некорректной для изменившегося контекста спецификацией).

В случае с Therac-25 большой вклад в произошедшие инциденты внесли модули, изначально разработанные для предыдущей версии системы (Therac-20) во всяком случае, было точно установлено, что именно ошибки в этих повторно-используемых модулях вызвали по крайней мере два смертных случая.

Причем, эти ошибки (как уже было установлено задним числом) проявлялись и при работе Therac-20, но та система была устроена так, что массивного переоблучения не происходило, а потому и процесс коррекции ошибок не запускался.

Можно привести еще несколько любопытных иллюстраций к проблемам, связанным с повторным использованием. Так, попытка внедрить в Англии программную систему управления воздушным движением, которая до того несколько лет успешно эксплуатировалась в США, оказалась сопряжена с большими трудностями ряд модулей весьма оригинальным образом обращались с информацией о географической долготе: карта Англия уподоблялась листу бумаги, согнутому и сложенному вдоль Гринвичского меридиана, и получалось, что симметрично расположенные относительно этого нулевого меридиана населенные пункты накладывались друг на друга. В Америке, через которую нулевой меридиан не проходит, эти проблемы никак не проявлялись. Аналогично, успешно функционировавшее авиационное ПО, изначально написанное с неявным прицелом на эксплуатацию в северном полушарии, создавало проблемы, когда его стали использовать при полетах по другую сторону экватора. Наконец, ПО, написанное для американских истребителей F-16, явилось причиной нескольких инцидентов, будучи использованным израильской авиацией при полетах над Мертвым морем, которое, как известно, находится ниже уровня моря. Это лишний раз подтверждает мысль, что безопасность ПО нельзя оценивать в отрыве от среды, в контексте которой эксплуатируется вся система.

О «корректном» ПО

Заветная мечта (не столько программистов, сколько потребителей), чтобы в ПО не было ошибок, увы, никак не исполняется. И иллюзий на этот счет уже не осталось. Соответственно, утверждение, что тестирование ПО и/или «доказательство» его корректности позволяют выявить и исправить все ошибки, можно признать тем мифом, в который мало кто верит.

Причина очевидна. Прежде всего, исчерпывающее тестирование сложных программных систем невозможно в принципе: реально проверить только небольшую часть из всего пространства возможных состояний программы. В результате, тестирование может продемонстрировать наличие ошибок, но не может дать гарантию, что их нет. Как ядовито замечают Жезекель и Мейер,[10] собственно, сам запуск Ariane 5 и явился весьма качественно выполненным тестом; правда, не каждый согласится платить полмиллиарда долларов за обнаружение ошибки переполнения.

Что же касается использования математических методов для верификации ПО в плане его соответствия спецификации, то оно (несмотря на оптимизм, особенно явный в 70-х г.) пока не вошло в практику в сколько-нибудь значительном масштабе, хотя и сейчас некоторые влиятельные специалисты продолжают утверждать, что это непременно случится в будущем. Вопрос, реалистично ли ожидать, что для систем масштаба Ariane 5 возможно выполнить полный цикл доказательства правильности всего ПО, остается открытым. Нет сомнений, однако, что для отдельных подсистем такая задача может и должна ставиться уже приводились аргументы о полезности использования формальных методов при разработке механизмов синхронизации в Therac-25.

Формальные методы разработки это тема специального большого разговора. Здесь же в качестве примера формального подхода, имеющего промышленные перспективы, упомянем только «B-Method»,[11] получивший недавно широкое паблисити в связи с созданием ПО для автоматического управления движением на одной из линий парижского метро. Разработчик метода Жан-Раймон Абриал (J.-R. Abrial), до того известный как создатель формального метода Z (вошедшего в учебные программы всех уважающих себя университетов), использовал идеи таких классиков, как Эдсгар Дийкстра (E.W.Dijkstra) и Тони Хоар (C.A.R.Hoare).

Важно, что основанная на формализмах методология поддержана практической инструментальной средой разработки Atelie B (которая, кстати, не единственная).

Эта среда включает в себя инструменты для статической верификации написанных на B-коде компонентов и для автоматического выполнения доказательств, автоматические трансляторы из B-кода в Си и Ада, повторно-используемые библиотеки B-компонентов, средства графического представления проектов и генерации документации, гипертекстовый навигатор и аниматор, позволяющий в интерактивном режиме моделировать исполнение проекта из спецификации, и, наконец, средства по управлению проектом. При разработке ПО для метро, включавшего около 100 тысяч строк B-кода (что эквивалентно 87 тыс. строк на Ада) пришлось доказать около 28 тысяч лемм. Насколько этот подход (и аналогичные ему) будет востребован практикой, покажет будущее.

И все же, такого рода верификация все равно не способна решить все проблемы, в частности, потому, что требуется специфицирование «корректного поведения» программной системы на формальном математическом языке, а это может быть очень непросто. К тому же, источник многих потенциально опасных ошибок может быть не связан непосредственно с вычислительными и алгоритмическими аспектами. Например, в 1992 г. большой резонанс получил произошедший в Англии случай, когда «пошел в разнос» компьютер на станции скорой помощи: причина неожиданно проявившиеся трудности с синхронизацией процессов в условиях большого количества поступивших заявок.

О «надежном» ПО

Теперь о менее очевидном мифе, который звучит так: программно-аппаратные системы обеспечивают заведомо большую надежность по сравнению с теми традиционными (например, электро-механическими) приборами, которые они заменяют.

Понятно, что аппаратные системы способны выдать случайный сбой, могут неправильно реагировать на изменившиеся условия окружающей среды и со временем изнашиваются. К тому же управление ими критически зависит от «человеческого фактора». А вот программное обеспечение ничему этому вроде бы не подвержено, а значит уже поэтому возложение на него функций, до того реализуемых на аппаратном или «операторном» уровне, уменьшает риски и повышает безопасность. И с этим очень хотелось бы согласиться, вот только рассмотренные частные случаи не позволяют вероятность систематических проектных ошибок даже в программных разработках, выполняемых высококвалифицированными коллективами для требовательных заказчиков, совсем ненулевая.

В конце 80-х гг. такая влиятельная в оборонных кругах организация как British Royal Signals and Radar Establishment сделала попытку оценки распространенности дефектов в ПО, написанном для ряда очень ответственных систем. Оказалось, что «до 10 % программных модулей и отдельных функций не соответствуют спецификациям в одном или нескольких режимах работы».[12]

Такого рода отклонения были обнаружены даже в ПО, прошедшем полный цикл всестороннего тестирования. Хотя большинство обнаруженных ошибок были признаны слишком незначительными, чтобы вызвать сколь-либо серьезные последствия, все же 5 % функций могли оказывать разного рода значимое негативное воздействие на поведение всей системы. Примечательно, что среди прочего авторы исследования особо упомянули выявленную в одном из модулей неназванной системы потенциальную возможность переполнения в целой арифметике, что могло привести к выдаче команды приводу повернуть некую установку не направо (как следовало), а налево. Достаточно предположить, что речь в ПО шла об управлении ориентацией пусковой ракетной установки, чтобы представить возможные последствия.

Коварство программных ошибок и в том, что они могут проявиться далеко не сразу, иногда после сотен тысяч часов нормальной эксплуатации как реакция на вдруг возникшую специфическую комбинацию многочисленных факторов. Так, установка Therac-25 вполне корректно работала в течение нескольких лет до первого переоблучения; и последующие зафиксированные инциденты происходили спорадически в течение 2.5 лет на общем «нормальном» фоне. NASA инвестировала огромные средства и ресурсы в верификацию и сопровождение программного обеспечения для космических кораблей Shuttle. есмотря на это, за 10-летие с 1980 г. времени начала использования ПО выявлено 16 ошибок «первой степени серьезности» (способных привести к «потере корабля и/или экипажа»). Восемь из этих ошибок не были обнаружены своевременно и присутствовали в коде во время полетов, хотя, к счастью, без последствий.

Зато во время полетов были задокументированы проблемы, возникшие от проявившихся 12 значимых ошибок, из которых три относились ко «второй степени серьезности» («препятствуют выполнению критически важных задач полета»). А ведь NASA имеет, может быть, самую совершенную и дорогостоящую комплексную систему процессов разработки и верификации ПО.

В то время как надежность аппаратуры может быть увеличена за счет ее дублирования, что резко нивелирует опасности от случайных сбоев, эквивалентного способа защиты от систематических программных ошибок не найдено (даже если некоторые вендоры, с подачи оторванных от практики исследователей, рекламируют методики и инструментарий, позволяющие разрабатывать «zero-defect software»). Впрочем, если бы методы производства идеального ПО существовали, то резонно предположить, что следование им потребовало бы нереалистично большого количества ресурсов и времени.

Повсеместно, в том числе и при создании ответственных систем, наблюдаемая тенденция свидетельствует о движении в обратном направлении в сторону снижения издержек, и стоимостных, и временных.

Наконец, как ни парадоксально это звучит, даже если бы компьютерные системы действительно были надежнее «традиционных», то это вовсе не обязательно означает, что они обеспечивают большую безопасность. Дело в том, что надежность ПО традиционно определяется степенью его соответствия зафиксированным в спецификациях требованиям; однако, часто бывает так, что ПО делает именно то, что ему и было предписано, и авария Ariane 5 классический тому пример: и злополучное вычисление посторонней для полета величины горизонтального отклонения Инерциальной Платформы, и реакция на него вплоть до выведения из строя всех навигационных систем и бортовых компьютеров все это случилось в полном соответствии с Требованиями, которые были частично унаследованы от Ariane 4 и не отражали новых реальностей.

Более того, по сравнению с ошибками в коде именно спецификационные ошибки обычно ведут к более тяжелым последствиям компетенции разработчиков ПО недостаточно для обнаружения таких ошибок. Программный комплекс сложная система, однако реальный мир, отражаемый в спецификационных требованиях еще более сложен и требует специальных экспертных знаний. Так что надежность ПО и его безопасность понятия, хотя и перекрывающиеся, но не идентичные.

Фактически любая сложная программная система при определенных обстоятельствах способна вести себя неожиданно для разработчиков и/или пользователей. Вероятность такого поведения, особенно если оно может привести к тяжелым последствиям, следует реалистически оценивать и предусматривать специальные средства защиты, в том числе уже не на уровне самого ПО, а на уровне всей системы. Собственно, авария с Ariane 5 продемонстрировала это в полной мере: реагируй система на выброшенное исключение не столь радикально, аварии бы не произошло ведь сам полет проходил нормально, но этот «глобальный контекст» просто не принимался во внимание!

Аналогично, катастрофические последствия при использовании Therac-25 наступили не столько из-за ошибок, допущенных в ПО, сколько вследствие того, что на аппаратном уровне не было предусмотрено защиты против этих ошибок.

Шлейф программных ошибок тянулся к Therac-25 от ранних версий этого сложного программно-аппаратного комплекса, но в предыдущей модели Therac-20 надлежащие аппаратные защитные механизмы были задействованы от них отказались по соображениям достижения большей производительности. К тому же программных ошибок оказалось много: в каждом конкретном инциденте проявлялась одна из них, ее исправляли затем следующий инцидент (уже со смертельным исходом) показывал, что исправлено не все. Безопасность это свойство всей системы, а не только ее программного компонента.