"Как самому сделать атомную бомбу" - читать интересную книгу автора

allow 16 hours for them to dry. This explosive will need a blasting cap to
detonate.


It may be necessary to make a quantity larger than the aforementioned
list calls for to bring about an explosion great enough to cause the Uranium
(or Plutonium) sections to weld together on impact.



Neutron Deflector
-----------------

The neutron deflector is comprised solely of Uranium-238. Not only is
U-238 non-fissionable, it also has the unique ability to reflect neutrons back
to their source.

The U-238 neutron deflector can serve 2 purposes. In a Uranium bomb, the
neutron deflector serves as a safeguard to keep an accidental supercritical
mass from occurring by bouncing the stray neutrons from the `bullet'
counterpart of the Uranium mass away from the greater mass below it (and vice-
versa). The neutron deflector in a Plutonium bomb actually helps the wedges
of Plutonium retain their neutrons by `reflecting' the stray particles back
into the center of the assembly. [See diagram in Section 4 of this file.]



Uranium & Plutonium
-------------------

Uranium-235 is very difficult to extract. In fact, for every 25,000 tons
of Uranium ore that is mined from the earth, only 50 tons of Uranium metal can
be refined from that, and 99.3% of that metal is U-238 which is too stable to
be used as an active agent in an atomic detonation. To make matters even more
complicated, no ordinary chemical extraction can separate the two isotopes
since both U-235 and U-238 possess precisely identical chemical
characteristics. The only methods that can effectively separate U-235 from
U-238 are mechanical methods.

U-235 is slightly, but only slightly, lighter than its counterpart,
U-238. A system of gaseous diffusion is used to begin the separating process
between the two isotopes. In this system, Uranium is combined with fluorine
to form Uranium Hexafluoride gas. This mixture is then propelled by low-
pressure pumps through a series of extremely fine porous barriers. Because
the U-235 atoms are lighter and thus propelled faster than the U-238 atoms,
they could penetrate the barriers more rapidly. As a result, the
U-235's concentration became successively greater as it passed through each
barrier. After passing through several thousand barriers, the Uranium
Hexafluoride contains a relatively high concentration of U-235 -- 2% pure
Uranium in the case of reactor fuel, and if pushed further could