"Как самому сделать атомную бомбу" - читать интересную книгу автора

(theoretically) yield up to 95% pure Uranium for use in an atomic bomb.

Once the process of gaseous diffusion is finished, the Uranium must be
refined once again. Magnetic separation of the extract from the previous
enriching process is then implemented to further refine the Uranium. This
involves electrically charging Uranium Tetrachloride gas and directing it past
a weak electromagnet. Since the lighter U-235 particles in the gas stream are
less affected by the magnetic pull, they can be gradually separated from the
flow.

Following the first two procedures, a third enrichment process is then
applied to the extract from the second process. In this procedure, a gas
centrifuge is brought into action to further separate the lighter U-235 from
its heavier counter-isotope. Centrifugal force separates the two isotopes of
Uranium by their mass. Once all of these procedures have been completed, all
that need be done is to place the properly molded components of Uranium-235
inside a warhead that will facilitate an atomic detonation.

Supercritical mass for Uranium-235 is defined as 110 lbs (50 kgs) of
pure Uranium.

Depending on the refining process(es) used when purifying the U-235 for
use, along with the design of the warhead mechanism and the altitude at which
it detonates, the explosive force of the A-bomb can range anywhere from 1
kiloton (which equals 1,000 tons of TNT) to 20 megatons (which equals 20
million tons of TNT -- which, by the way, is the smallest strategic nuclear
warhead we possess today. {Point in fact -- One Trident Nuclear Submarine
carries as much destructive power as 25 World War II's}).

While Uranium is an ideally fissionable material, it is not the only one.
Plutonium can be used in an atomic bomb as well. By leaving U-238 inside an
atomic reactor for an extended period of time, the U-238 picks up extra
particles (neutrons especially) and gradually is transformed into the element
Plutonium.

Plutonium is fissionable, but not as easily fissionable as Uranium.
While Uranium can be detonated by a simple 2-part gun-type device, Plutonium
must be detonated by a more complex 32-part implosion chamber along with a
stronger conventional explosive, a greater striking velocity and a
simultaneous triggering mechanism for the conventional explosive packs. Along
with all of these requirements comes the additional task of introducing a fine
mixture of Beryllium and Polonium to this metal while all of these actions are
occurring.

Supercritical mass for Plutonium is defined as 35.2 lbs (16 kgs). This
amount needed for a supercritical mass can be reduced to a smaller quantity of
22 lbs (10 kgs) by surrounding the Plutonium with a U-238 casing.


To illustrate the vast difference between a Uranium gun-type detonator