"Электромеханика в космосе" - читать интересную книгу автора (Иосифьян Андраник Гевондович)

ВВЕДЕНИЕ

Электромеханика — наука о движении и взаимодействии вещественных инерциальных макроскопических и микроскопических тел, связанных с электрическими и магнитными полями. Движение различных транспортных средств: автомобилей, теплоэлектровозов, самолетов на современном этапе развития в очень большой степени определяется законами и принципами электромеханики.

Ракеты-носители, используемые для вывода полезного груза на орбиту вокруг Земли и имеющие бортовые системы электромеханики, автоматики, электроснабжения, по своим законам движения не существенно отличаются от мощных авиационных сверхскоростных самолетов. Поэтому электротехническое оборудование таких ракет-носителей, в том числе средства электромеханики (электрические машины, аппараты, приборы), по своим весогабаритным, энергетическим характеристикам и техническим требованиям очень близки к авиационному оборудованию (в том числе по продолжительности непрерывной работы), с той лишь разницей, что перегрузки при ускорениях и вибрационные характеристики авиационных электромеханических систем при применении в ракетах-носителях имеют более широкий диапазон.

В отличие от этих систем работоспособность бортового электротехнического оборудования и систем космических аппаратов, выводимых на орбиту, может исчисляться многими месяцами и годами. Поэтому с точки зрения общего технического оснащения электрифицированных механизмов соответствующими электромеханическими устройствами (особенно в длительно действующих обитаемых космических кораблях) они больше подходят и гармонируют с техническими эксплуатационными требованиями морских судов, в том числе глубинных аппаратов. В то же время, совпадая по эксплуатационным характеристикам и общей структуре технического оснащения с объектами морского судостроения, космические объекты требуют значительно более жестких ограничений на вес и габариты всех электротехнических, электромеханических, радиоэлектронных и других электрифицированных бортовых систем.

Следует отметить следующие особенности электромеханических устройств космических аппаратов. Во-первых, в условиях орбитального полета возникновение любого движения каждого бортового рабочего механизма (большого или малого) воздействует в целом на космический объект в соответствии с законами сохранения центра масс и момента количества движения. Таким образом, при использовании электрической энергии для обеспечения движения любой массы в заданном направлении (поступательном или вращательном) реакция этого движения на корпус космического аппарата должна быть каким-то образом скомпенсирована. Это создает особые условия работы электромеханических систем, устанавливаемых на космические аппараты. Причем для каждого частного случая специфические особенности реакции на корпус имеют свою особую форму.

Во-вторых, любое электромеханическое устройство, выполняя полезную работу, несет соответствующие (в зависимости от величины КПД) тепловые потери. При работе механизмов в условиях глубокого вакуума отвод тепла в космическое пространство не может происходить с помощью каких-либо охлаждающих агентов и поэтому осуществляется лишь за счет излучения лучистой энергии в пространство, что вызывает необходимость при конструировании космических аппаратов использовать соответствующие поверхности (площади) для отвода тепла.

И наконец, в-третьих, так как космический аппарат должен находиться в космосе и функционировать долгие годы, то при эксплуатации электромеханических систем такого объекта требуется, чтобы они имели очень длительный срок службы и безотказно и непрерывно работали в динамическом режиме в течение десятков тысяч часов.