"Космические двигатели будущего" - читать интересную книгу автора (Дмитриев Александр Сергеевич, Кошелев...)

ДВИГАТЕЛИ С ИСПОЛЬЗОВАНИЕМ ВНЕШНИХ ИСТОЧНИКОВ МАССЫ

Почти во всех рассмотренных ранее двигательных системах масса, от которой отталкивается ракета (отбрасываемая масса), сосредоточена на борту ракеты. Для хранения массы требуются баки и поддерживающая их конструкция, что сильно увеличивает массу ракеты, ограничивает ее стартовую массу и сокращает при данном запасе массы характеристическую- скорость полезного груза. Отсюда, естественно, стремление к использованию в ракетных двигателях внешних масс, подобно тому как это осуществляется в наземном и воздушном транспорте, когда в качестве отбрасываемой массы используется либо сама Земля, либо ее атмосфера.

Проведено много исследований по использованию земной атмосферы для старта ракет с поверхности Земли. При этом ожидался двоякий выигрыш. Во-первых, кислород в воздухе может играть роль окислителя горючего, запасаемого на борту ракеты, что эквивалентно увеличению общего запаса энергии на борту ракеты. Во-вторых, увеличение количества отбрасываемой массы позволит снизить скорость истечения, а, следовательно, на начальном участке траектории полета увеличится тяговый КПД. Кроме того, при заданной мощности двигателя за счет дополнительной отбрасываемой массы можно увеличить тягу и запускать ракеты больших стартовых масс.

Как источник кислорода и дополнительной массы, воздух широко применяется в современных газотурбинных и прямоточных воздушно-реактивных двигателях (ВРД).

Принцип работы ВРД состоит в том, что поступающий в двигатель со скоростью летательного аппарата воздух увеличивает свою скорость за счет выделяемой в двигателе энергии. Разность скоростей воздуха на входе в двигатель и на выходе из него, помноженная на массовый расход воздуха, как раз и равна тяге двигателя. Поскольку при заданном энерговыделении и при прочих равных условиях относительный прирост скорости воздуха будет падать, то с увеличением скорости летательного аппарата будет соответственно уменьшаться тяга ВРД.[5]

Ограничения по скорости полета для двигателей, использующих внешнюю массу, можно существенно снизить, если применять энергию ядерных реакций, подводя ее к воздуху либо непосредственно (как в газофазных реакторах), либо от источника электроэнергии. В первом случае будет происходить вынос радиоактивных продуктов в атмосферу, во втором из-за больших масс бортовой энергоустановки старт с поверхности Земли становится невозможным. Поэтому использование внешней массы в таких двигателях рассматривается лишь в космическом пространстве.

Благодаря низкой плотности вещества в космосе традиционные схемы воздухосборников в виде трубы с раструбом имеют смысл лишь на очень низких орбитах (100–120 км). Для больших высот эффективность воздухозаборника можно значительно увеличить, если снабдить двигатель источником магнитного поля (соленоидом). Межпланетная среда представляет собой ионизированный газ (плазму), причем степень ионизации с удалением от Земли растет, и, начиная с высот 10 000 км, наступает практически полная ионизация.

Как уже указывалось, движение частиц плазмы поперек силовых линий магнитного поля затруднено, и магнитное поле может играть роль воронки, направляющей потоки заряженных частиц в двигатель. В результате эффективная площадь массозаборника при практически достижимых магнитных полях может возрасти в несколько тысяч раз.

Например, для источника магнитного поля в виде витка с током диаметром 15 м и индукцией магнитного поля в центре 10 Тс площадь, с которой будет собираться поток плазмы, составит около 2 км2. Двигатель с подобным заборником массы на низких орбитах при скорости истечения 100 км/с может создавать тягу 2 кгс и потреблять мощность на создание тяги 200 кВт.

Такие двигатели могут быть пригодны для транспортных операций между орбитами с высотами от 300 до 10 000 км. Выше плотность среды сильно падает, и в межпланетном пространстве концентрация частиц составляет всего 10 см–3, что соответствует плотности 10–20 кг/м3. Для того чтобы представить себе такую степень разрежения вещества, воспользуемся образным сравнением известного английского астронома Дж. Джинса: «Одним своим выдохом муха могла бы заполнить воздухом такой плотности целый собор».

Массовый расход через двигатель будет, конечно, увеличиваться с ростом скорости ракеты, но при этом из-за увеличения энергии потока при постоянной напряженности магнитного поля будет и уменьшаться эффективный размер магнитного заборника. В итоге расход массы будет расти всего лишь пропорционально корню кубическому из скорости.

Если двигатель, снабженный магнитным массозаборником, будет чисто ионным (без компенсации заряда отбрасываемых частиц), то возможно некоторое увеличение потока внешней массы за счет появления электрического заряда на ракете. Например, если двигатель ускоряет положительно заряженные ионы, то он приобретает отрицательный заряд и начинает притягивать ионы космического пространства. Эти ионы магнитным полем могут направляться в ускорительное устройство и использоваться как рабочее тело.

Однако для получения таким способом достаточных расходов массы при плотности межпланетной среды нужны очень высокие потенциалы ракеты относительно окружающего пространства. Для корабля диаметром 15 м при потенциале 106 В массовый поток составит 4 · 10–8 кг/с. При доускорении этого потока, скажем, потенциалом в 10 раз большим, тяга двигателя составит 0,03 кгс. Но ускорение разностью потенциалов 107 В соответствует энергии частиц, образующихся при термоядерных реакциях. В этом случае если использовать их в качестве отбрасываемой массы, добавление ионов космической плазмы не даст заметного выигрыша в тяге.

Подводя итоги всему сказанному, можно сделать вывод о том, что использование межпланетной, а тем более межзвездной среды в качестве рабочего тела ракетных двигателей станет возможным, если характеристики существующих источников магнитного поля будут увеличены в сотни тысяч раз. Пути такого повышения в настоящее время даже неизвестны.

Однако в межпланетном пространстве имеется достаточное количество макротел — планет, их спутников, астероидов, метеоритов. Мы не будем касаться непосредственного употребления пород, слагающих космические тела, и их атмосфер. В принципе вещества, из которых состоят космические тела, могут быть применены в любых из описанных здесь двигателях. Рассмотрим лишь способы бесконтактного использования макротел.

Наиболее сильно в космическом пространстве проявляется гравитационное взаимодействие. К сожалению, возможности его использования для ускорения космических аппаратов сильно ограниченны. Действительно, пролетая мимо космического тела, ракета будет разгоняться за счет его притяжения до тех пор, пока не пройдет точку минимального сближения. Далее начнется ее торможение, и суммарное изменение кинетической энергии ракеты будет равно нулю. Если бы после минимального сближения можно было бы заэкранировать силу тяготения или изменить ее знак на противоположный, то многие задачи космических полетов были бы легко решены. Но, увы, современная наука даже не знает, возможны ли вообще такие манипуляции с гравитационным полем.

Тем не менее в некоторых случаях гравитационным взаимодействием можно воспользоваться для сокращения бортового запаса массы. Это касается в первую очередь поворота плоскостей орбиты космических аппаратов. Например, при запуске геостационарного спутника с облетом Луны можно сократить расход рабочего тела на 10 % по сравнению с прямым запуском. Более" того, возможны двигательные системы, работающие за счет неоднородностей гравитационного поля, которые для перемещения полезного груза в поле тяжести вообще не нуждаются в бортовых запасах массы.

Принцип их работы основан на использовании так называемых приливных сил (рис. 14). Если две массы, связанные тросом, вращаются на орбите искусственного спутника Земли, то в целом такая система движется со скоростью, соответствующей орбите ее центра масс. В результате масса, наиболее удаленная от Земли, будет иметь большую скорость, чем нужно для ее равновесного движения, и поэтому на нее должна действовать избыточная центробежная сила. Для ближней к Земле массе, наоборот, скорость меньше равновесной и имеется избыточная гравитационная сила, равная и противоположно направленная сила, приложенной к верхней массе.

Эти силы называются приливными. Они натягивают трос, и, распуская трос с трением, мы заставим приливные силы совершать работу. Эта работа осуществляется за счет кинетической энергии системы, и в итоге центр тяжести ее будет переходить на более низкую орбиту. Подобным же образом приливные силы, действующие между планетами, вызывают их взаимное сближение. Например, океанские приливы, вызываемые Луной, в результате трения о поверхность Земли приводят к уменьшению расстояния между Луной и Землей.

И, наоборот, совершая работу против действия приливных сил, можно повысить орбиту центра тяжести системы. Для повторения цикла после полного сближения масс их нужно оттолкнуть при свободно распускающемся тросе. Но эффективность такой двигательной системы в околоземном пространстве очень мала.

Величина приливных сил равна произведению ускорения силы тяжести на орбите на отношение расстояния между массами к радиусу орбиты. На орбите высотой 350 км при расстоянии между массами 10 км она составляет 1,4 · 10–2 Н/кг, на геостанционарной орбите — 7 · 10–5 Н/кг. Работа, совершаемая за один цикл сближения, соответственно равна 7 · 10–2 и 3,5 · 10–4 Дж/кг. Чтобы перевести космический аппарат с орбиты высотой 350 км на геостационарную орбиту (35 880 км), потребуется около 108 циклов. Даже если допустить, что каждый цикл будет совершаться за 1 с, то на такое перемещение потребуется более 10 лет.


Рис. 14. Схема «гравитационного» двигателя (стрелками указано направление приливных сил): 1 — полезный груз, 2 — трос, 3 — устройства для намотки троса, 4 — Земля


Возможно, что когда человечество начнет создавать поселения в околоземном пространстве и потребуется транспортировка на высокие орбиты многих миллионов тонн грузов, такой тихоходный способ перемещения найдет свое применение. Преимущества его очевидны: полное отсутствие расходуемой массы и малые мощности двигательной системы.

Поскольку, в отличие от гравитационного взаимодействия, электромагнитным взаимодействием люди научились управлять, то возможно создание двигательных систем с использованием макротел на этой основе. В простейшем случае такой двигатель представляет собой ускоритель заряженных частиц. При пролете мимо космического тела его облучают заряженными частицами (например, электронами). В результате космическое тело и ракета оказываются носителями зарядов противоположных знаков.

Притяжение зарядов приводит к ускорению ракеты. После максимального сближения ракеты с космическим телом можно либо выключить ускоритель, и заряды быстро скомпенсируются плазмой космического пространства, либо, пока заряд на космическом теле сохраняется, произвести перезарядку ракеты, и тогда силы притяжения перейдут в силы отталкивания.

Прирост скорости ракеты за счет такого взаимодействия пропорционален разности потенциалов между ракетой и заряжаемым телом. Например, для космического аппарата массой 10 т при разности потенциалов 106 В скорость может быть увеличена на 1 м/с, а при 108 В — соответственно на 100 м/с. КПД такого способа ускорения растет с увеличением относительной скорости ракеты и заряжаемого тела и при скоростях, бóльших 10 км/с, может достигать 20 %.

Из-за малых приростов скорости за один цикл зарядки такие двигательные системы целесообразно применять в тех областях пространства, где встречи с космическими телами достаточно часты (например, в поясе астероидов). Кроме того, электростатический разгон ракет может оказаться полезным при больших грузопотоках между орбитами спутников Земли. Тогда может быть осуществлена следующая схема полета. На близкие друг к другу встречные орбиты (орбиты с противоположным вращением) выводится система спутников, часть из которых снабжена ускорителями заряженных частиц. Заряжая встречные спутники противоположного вращения, можно изменять параметры орбит всей системы. При этом удовлетворяются все условия эффективного применения такого способа ускорения: большая частота встреч и большие относительные скорости.

Одним из существенных недостатков электростатического ускорения космических аппаратов является бомбардировка их поверхности частицами космической плазмы, ускоренными до высоких энергий электрическим полем аппарата. В результате возникает проникающее излучение гамма- и рентгеновского диапазонов. Этот недостаток будет отсутствовать при использовании магнитного взаимодействия.

Если ракету снабдить источником магнитного поля, она будет взаимодействовать с магнитными полями Земли, планет и железоникелевыми астероидами. Напряженность космических магнитных полей на несколько порядков превосходит в сопоставимых единицах напряженность электрических полей. Но, к сожалению, магнитное поле имеет дипольный характер, и его силовое взаимодействие проявляется лишь при наличии неоднородностей (градиента). Градиент космических полей очень мал: для того чтобы получить силу взаимодействия, например 0,1 кгс, с магнитным полем Земли, нужен соленоид, имеющий более 106 ампер-витков и диаметр 100 м. При существующих способах получения магнитного поля ракета с таким соленоидом, даже если пренебречь массой полезного груза, будет иметь ускорение всего 10–6 м/с2.

Более перспективным является применение магнитных систем в описанном ранее межорбитальном транспорте при транспортировке групп спутников, вращающихся на встречных орбитах. За счет взаимного притяжения или отталкивания таких аппаратов можно изменять их орбитальную скорость. Однако поскольку магнитное поле из-за его дипольного характера спадает пропорционально кубу расстояния, а электрическое — квадрату, такие двигательные системы будут уступать электростатическим по своим массовым характеристикам.

Современная теория электромагнетизма допускает существование магнитных монополей — аналогов электрических зарядов. Если такие монополи будут обнаружены и их можно будет получать в достаточном количестве, перед космической техникой откроются огромные возможности. Ракета, имеющая монопольный магнитный заряд, могла бы стартовать с поверхности Земли без всяких затрат бортового запаса массы, только лишь за счет взаимодействия с ее магнитным полем, и далее продолжать разгоняться в межзвездных и межпланетных полях.