"Космическая технология и производство" - читать интересную книгу автора (Гришин Сергей Дмитриевич, Лесков Леонид...)Космическая металлургияМеталлургия имеет дело с получением металлов и с процессами, сообщающими металлическим сплавам необходимые свойства путем изменения их состава и структуры. К металлургии относятся процессы очистки металлов от нежелательных примесей, производство металлов и сплавов, термическая обработка металлов, литье, нанесение покрытий на поверхность изделий и т. д. Большинство этих процессов включает с себя фазовые переходы к жидкому или газообразному состояниям, для которых влияние величины массовых сил на состав и структуру конечного материала может быть значительным. Поэтому перенос металлургических процессов в космос открывает принципиальные возможности производства материалов с улучшенными характеристиками, а также материалов, которые на Земле получить нельзя. Металлургические процессы в космических условиях могут быть использованы для решения следующих задач. 1. Приготовление сплавов, в которых нет сегрегации[6], обусловленной силой Архимеда (получение композиционных материалов, сплавов высокой однородности и чистоты, пенометаллов). 2. Приготовление сплавов в отсутствие конвекционных токов (бездефектные монокристаллы, улучшенные эвтектики и магнитные материалы). 3. Безгравитационное литье (приготовление пленок, проволоки, литых изделий сложной формы). 4. Бестигельная плавка металлов и сплавов (очистка металлов и сплавов, их однородное затвердевание). 5. Разработка методов получения неразъемных соединений на космических аппаратах (сварка, пайка и т. д.). Рассмотрим коротко состояние исследований, направленных на получение в космосе материалов металлургическими методами. Бездефектные кристаллы и сплавы. Для производства сплавов исходные компоненты могут быть приготовлены как в жидкой, так и в газообразной (паровой) фазе с последующей кристаллизацией. В невесомости из-за отсутствия разделения фаз можно задавать произвольные комбинации компонентов в любых состояниях. Можно, в частности, получить прямой переход из паровой фазы к твердому телу, минуя расплав. Материалы, полученные при испарении и конденсации, обладают более тонкой структурой, которую обычно трудно получить при процессах плавления и затвердевания (плавку в космических условиях можно рассматривать как способ очистки). При этом в расплаве возможны следующие эффекты: испарение более летучего компонента, разрушение химических соединений (окислы, нитриды и т. п.). Важнейший процесс получения сплавов — затвердевание. Этот процесс существенно влияет на структуру металла. При затвердевании могут возникать различные дефекты в структуре металла: неоднородность сплава по химическому составу, пористость и т. д. Присутствие в расплаве перепадов температуры и концентрации может приводить к возникновению конвекции. Если расплав затвердевает в условиях колебаний температуры, то возникают локальные колебания скорости роста кристалла, что может привести к такому дефекту, как полосчатость структуры кристалла. Для преодоления этого дефекта структуры необходимы меры по уменьшению конвекции. В космических условиях открываются возможности приготовления однородных смесей, состоящих из компонентов с разной плотностью и с различными температурами плавления. На Земле такие смеси не могут быть устойчивы из-за силы Архимеда. Особый класс сплавов такого типа — это магнитные материалы, в том числе новые сверхпроводники. Ранее отмечалось, что одно из преимуществ метода зонной плавки в космических условиях состоит в том, что можно получать монокристаллы более крупных размеров, чем на Земле. Отсутствие силы тяжести позволяет также по-новому организовать процессы направленной кристаллизации. Таким путем могут быть получены нитевидные кристаллы большой длины («усы», или «уискеры») с повышенной прочностью. Рассмотрим эксперименты, в которых исследовались практические возможности космической металлургии. Так, в эксперименте на станции «Скайлэб» были получены сплавы из компонентов, которые плохо смешиваются в земных условиях. В трех ампулах были размещены заготовки из сплавов золото—германий, свинец—цинк—сурьма, свинец—олово—индий. В космических условиях образцы подвергались переплавке несколько часов, выдерживались при температуре выше точки плавления, а затем охлаждались. Доставленные на Землю образцы обладают уникальными свойствами: однородность материалов оказалась выше, чем у контрольных образцов, полученных на Земле, а сплав золота с германием оказался сверхпроводящим при температуре около 1,5 К. Аналогические смеси, полученные из расплава на Земле, этим свойством не обладают, видимо, из-за отсутствия однородности. В рамках советско-американской программы ЭПАС был проведен такой эксперимент, целью которого было исследование возможности получать магнитные материалы с улучшенными характеристиками. Для исследований были выбраны сплавы марганец—висмут и медь— кобальт—церий. В рабочей зоне электронагревной печи поддерживалась максимальная температура 1075 °C в течение 0,75 ч, а затем в течение 10,5 ч печь остывала. Затвердевание происходило в период сна космонавтов, чтобы снизить нежелательное воздействие вибраций при их перемещениях внутри станции. Наиболее важный результат этого эксперимента состоит в том, что у образцов первого типа, затвердевших на борту космического корабля, величина коэрцитивной силы[7] на 60 % выше, чем у контрольных образцов, полученных на Земле. Композиционные материалы. Композиционными материалами, или композитами, называют искусственно созданные материалы, которые состоят из основного связующего материала и прочного армирующего наполнителя. В качестве примеров можно привести комбинацию алюминия (связующий материал) со сталью, приготовленной в виде нитей (армирующий материал). Сюда же относятся и пенометаллы, т. е. металлы, в объеме которых содержится большое количество равномерно распределенных газовых пузырьков. По сравнению с образующими их компонентами композиционные материалы обладают новыми свойствами — повышенной прочностью при меньшем удельном весе. Попытка получить в наземных условиях композиты с основой, находящейся в жидком состоянии, приводит к расслоению материала. Приготовление композитов в космических условиях может обеспечить более однородное распределение армирующего наполнителя. На станции «Скайлэб» был также поставлен эксперимент, цель которого состояла в получении композиционных материалов, армированных «усами» из карбида кремния (удельный вес 3,1). В качестве основного (матричного) материала было выбрано серебро (удельный вес 9,4). Композиционные материалы с металлической основой, армированные «усами», представляют практический интерес ввиду их высокой прочности. Техника их получения основана на последовательных процессах перемешивания, прессовки и спекания. При проведении космического эксперимента размеры частиц серебряного порошка составляли ~ 0,5 мм, диаметр «усов» из карбида кремния ~ 0,1 мкм и средняя длина ~ 10 мкм. В кварцевой трубке, в которой размещался образец, имелся поршень из графита и кварца с пружиной для сжатия образца после расплавления, чтобы выдавливать из расплава пустоты. Исследование доставленных из космоса композиционных материалов показало, что по сравнению с контрольными образцами они обладают значительно более однородной структурой и более высокой твердостью. В случае материалов, полученных на Земле, четко видно структурное расслоение, происходит всплывание «усов» вверх. Эвтектики. Эвтектика — это тонкая смесь твердых веществ, кристаллизация которых происходит одновременно при температуре ниже температуры плавления любого из компонентов или любых других смесей этих компонентов. Температура, при которой происходит кристаллизация такого расплава, называется эвтектической. Сплавы этого типа часто образуются из компонентов, сильно отличающихся друг от друга (например, в состав эвтектического сплава Вуда входят висмут, свинец, олово, кадмий). Эвтектические материалы широко применяются в науке и технике: их используют для изготовления лопаток газовых турбин, в качестве сверхпроводящих и специальных оптических материалов. Для приготовления эвтектик обычно используют метод направленного затвердевания, т. е. затвердевания в одном заданном направлении. Применение этого метода в космических условиях представляет несомненный интерес, потому что из-за отсутствия конвекции можно улучшить однородность материала, а исключая контакт расплава со стенками, можно получать свободные от окислов материалы, которые будут обладать полезными оптическими свойствами. Разновидностью эвтектик являются двухфазные системы типа «усов». Это игольчатые монокристаллы с весьма совершенной структурой, прочность которых благодаря отсутствию посторонних включений приближается к теоретически возможной. В невесомости такие материалы можно выращивать и внедрять в жидкий металл методами композиционного литья. Еще одна разновидность эвтектик — тонкие эпитаксиальные пленки. Такие пленки находят широкое применение при изготовлении транзисторов путем нанесения материала на твердую основу — подложку из жидкой или паровой фазы. Проявление конвекции в жидкости или в газе ведет к искажению решетки эпитаксиальных пленок, к появлению в них нежелательных включений и других дефектов структуры. В космических условиях поставлен ряд экспериментов по исследованию эвтектических сплавов. Например, в одном эксперименте на станции «Скайлэб» исследовалось влияние невесомости на структуру сплава медь— алюминий при направленном затвердевании. В доставленных из космоса образцах количество дефектов уменьшилось на 12–20 %. В другом эксперименте на станции «Скайлэб» и МА 131 при совместном полете кораблей «Союз» и «Аполлон» исследовалось получение двухфазных эвтектик галогенидов (NaCl—NaF в первом случае и NaCl—LiF — во втором). При затвердевании такой эвтектики одна из фаз (NaF или LiF) может образовать нити, внедренные в другую фазу как в матричный материал. Подобные эвтектики могут найти применение в качестве волоконных световодов[8] для инфракрасной области спектра. Нитеподобные эвтектики, произведенные на Земле, обладают большим количеством дефектов, возникновение которых связано с колебательными конвекционными движениями в жидкости. Структура эвтектик галогенидов, полученных в космосе, оказалась более совершенной, что привело к улучшению их технических характеристик. Так, коэффициент пропускания света для образца первого типа возрос в 40 раз, а второго типа — в 2 раза по сравнению с аналогичными образцами, выращенными на Земле. Технология получения неразъемных соединений. Как отмечалось выше, первые в мире работы в этой области выполнены в Советском Союзе в 1969 г. на космическом корабле «Союз-6». На советской космической станции «Салют-5» космонавты Б. В. Волынов и В. М. Жолобов продолжили исследования в этом направлении, успешно осуществив опыты по пайке металлов с помощью прибора «Реакция». Прибор «Реакция» (см. рис. 6) и размещаемый в нем экзоконтейнер по конструкции не были герметичны, и поэтому для имитации условий пайки в космическом пространстве из герметизированной области между муфтой и трубкой был заблаговременно откачан воздух (см. рис. 9). Трубка и муфта были изготовлены из нержавеющей стали, а для создания между ними капиллярных зазоров на поверхности трубки сделана накатка глубиной 0,25 мм. В качестве припоя был выбран высокотемпературный марганец-никелевый припой (температура пайки 1200–1220 °C), который характеризуется высокими механическими свойствами и хорошей коррозионной стойкостью. Наземные металлографические исследования и испытания швов (на вакуумную плотность, на механическую прочность на разрывной машине с внутренним давлением до 500 атм) показали, что полученные в космосе паяные соединения по качеству не уступают полученным в земных условиях, а по ряду показателей превосходят их. В частности, наблюдается равномерное заполнение зазоров припоем, более однородна микроструктура металла (см. рис. 10). Результаты испытаний на борту космических аппаратов различных методов сварки и пайки подтверждают, что при выполнении на перспективных космических объектах монтажно-сборочных работ эти методы получения неразъемных соединений найдут широкое применение. |
||
|