"Космические методы в океанологии" - читать интересную книгу автора (Большаков Анатолий Александрович)ОСНОВЫ КОСМИЧЕСКОЙ ОКЕАНОЛОГИИЗа последние два-три десятилетия человечество все более пристальное внимание стало обращать на водную оболочку нашей планеты − Мировой океан. Причин этому много, и, по-видимому, одной из главных из них является настоятельная необходимость лучше познать сам океан, изучить происходящие в его глубинах и на поверхности процессы, подсчитать запасы минеральных и пищевых ресурсов и выяснить, как эффективнее использовать его в качестве транспортной магистрали. Сейчас, когда многие страны испытывают все более острый дефицит пищевого белка, когда истощаются ресурсы суши, когда на суше уже выработаны многие месторождения нефти и других полезных ископаемых, человечество возлагает все большие надежды на океан, на его богатства. Программы исследования Мирового океана во всех развитых странах расширяются стремительными темпами. Просторы Мирового океана непрерывно бороздят научно-исследовательские суда (НИС) нескольких десятков стран. Только в нашей стране несколько сот больших и малых НИС участвуют в программах исследования океана. С помощью НИС за 200 лет, прошедших с начала научных исследований в Мировом океане, обследованы все, даже самые отдаленные его уголки, и, казалось бы, океанологи могут быть довольны сложившейся ситуацией. Но, к сожалению, это пока не совсем так. Даже такие большие флотилии НИС уже не могут удовлетворить современных потребностей науки. Дело в том, что площадь, которую занимает на земном шаре Мировой океан, огромна − около трех четвертей поверхности нашей планеты. Его площадь превышает 360 млн. км2, а за один рейс НИС длительностью несколько месяцев можно обследовать только весьма незначительную ее часть. В глобальном же масштабе любой НИС за конкретный небольшой отрезок времени проводит измерения только в одной точке. И если, даже используя несколько НИС, можно получить на какой-то обширной акватории десятки таких «точек», то «состыковать» их данные, полученные зачастую в разное время, бывает порой весьма затруднительно. Как показал опыт обработки информации с первых метеорологических ИСЗ, в этом случае на помощь океанологам могут прийти космические методы, которые не только помогают связать в единую картину данные измерений на отдельных НИС, но в ряде случаев дают принципиально новую информацию об океане, недоступную для сбора традиционными методами. По предварительным оценкам, информативность спутниковых систем исследования Земли такова, что она в ряде случаев намного выше традиционных контактных методов. Определение, например, температуры поверхности Мирового океана с использованием только одного океанологического ИСЗ эквивалентно синхронным измерениям на 20 000 НИС. Как показали уже первые эксперименты, наблюдения Мирового океана из космоса с помощью ИСЗ и ОКС имеют ряд принципиальных особенностей, делающих их весьма привлекательными для всех ученых, занятых исследованием океана. Во-первых, при наблюдении Земли из космоса даже обычным невооруженным глазом или с помощью специальной аппаратуры можно буквально одним взглядом окинуть огромную площадь. Если при полете КА по низким околоземным орбитам одним взглядом можно окинуть площадь в несколько десятков или сотен тысяч квадратных километров, то по мере подъема высоты ИСЗ она существенно увеличивается и для орбиты высотой несколько десятков тысяч километров достигает уже почти половины поверхности земного шара, т. е. десятков миллионов квадратных километров. Конечно, детали земной поверхности хорошо различимы только в подспутниковой точке (в надире) или вблизи нее, поскольку при наблюдении областей, лежащих у линии горизонта, очень велики геометрические искажения и резко возрастает мешающее наблюдениям влияние атмосферы. Но если даже ограничиться углами 45 − 60° относительно вертикали, то все равно наблюдаемые из космоса площади поверхности Земли будут достаточно велики. На рис. 1 приведен график зависимости наблюдаемой площади поверхности Земли от высоты положения наблюдателя. Особенно наглядно обзорность космических методов демонстрируют космические фотографии Земли, полученные с помощью КА, движущихся по высоким околоземным или лунным траекториям. В свое время в печати было опубликовано немало таких фотографий, выполненных с помощью советских КА «Молния» и «Зонд» и американских космических кораблей «Аполлон». И на многих из них отчетливо были видны крупные реки и озера, заливы, моря и континенты, целые океаны и даже крупнейший из них − Тихий океан. По-видимому, эти первые космические фотографии Земли привели океанологов к пониманию глобального характера многих проблем океанологии и дали мощный толчок разработке новых методов исследования Мирового океана. Итак, подчеркнем еще раз: большая обзорность и информативность − одно из главных принципиальных отличий и достоинств космических методов изучения океана. Во время движения ИСЗ по орбите проводится исследование поверхности Земли вдоль траектории полета, при этом информация от научных приборов может непрерывно или по заданной программе записываться на борту ИСЗ и передаваться на наземные пункты при пролете над ними. При запусках ИСЗ, предназначенных для исследования поверхности Земли и, в частности, Мирового океана, весьма серьезное внимание уделяется выбору параметров орбит ИСЗ, поскольку от этого зависит режим обзора тех или иных районов. При выборе так называемых геосинхронных орбит обеспечивается регулярный пролет над одними и теми же районами Земли. Геосинхронные орбиты первого порядка обеспечивают ежесуточный пролет спутника над интересующими районами, а орбиты более высокого порядка обеспечивают двух-, трех- и более суточный цикл наблюдений. При создании космической системы, состоящей из нескольких геосинхронных спутников, интервалы наблюдений можно в соответствующее число раз уменьшить и добиться необходимой высокой периодичности получения информации. Рис. 1. Зависимость сферического диаметра зоны видимости поверхности Земли от высоты положения наблюдателя Однако строго геосинхронные орбиты не совсем выгодны для построения космической системы исследования Земли. ИСЗ на таких орбитах проходят все время над одними и теми же районами Земли, в то время как другие районы могут выпасть из их поля зрения. Поэтому на практике многие ИСЗ, предназначенные для исследования Земли, выводят на квазигеосинхронные орбиты, на которых ИСЗ каждые новые сутки проходят над новыми районами Земли и обеспечивают, таким образом, систематический последовательный обзор всей поверхности Земли. Постоянство временных условий наблюдения Мирового океана можно обеспечить при использовании для океанологических ИСЗ солнечно-синхронных орбит. На таких орбитах ИСЗ пролетают над одними и теми же районами всегда в одно и то же местное время, что позволяет проводить исследования при неизменных условиях освещения поверхности Земли Солнцем. Для обеспечения полного обзора всей поверхности Мирового океана ИСЗ должен выводиться на орбиту с большим углом наклонения ее плоскости к плоскости экватора. Солнечно-синхронные околоземные орбиты имеют наклонения в диапазоне от 95 до 100°, что позволяет при их использовании исследовать и околополярные области Земли. Естественно, что океанологические ИСЗ, как и другие ИСЗ, предназначенные для изучения поверхности Земли, целесообразно выводить на круговые орбиты, что позволяет получать информацию в неизменном масштабе и существенно упростить алгоритмы ее обработки. Высоты орбит запущенных и разрабатываемых океанологических ИСЗ лежат в интервале 600 − 1000 км. Нижняя граница выбирается обычно из условия обеспечения достаточно продолжительного (до одного года и более) времени существования ИСЗ, а верхняя − из условия обеспечения необходимого обзора поверхности Земли и заданного пространственного разрешения передаваемой информации. На орбитах такой высоты ИСЗ за сутки совершает 14 − 16 витков вокруг Земли, и поскольку Земля вращается, то на каждом витке ИСЗ проходит над новым районом ее поверхности. Таким образом, проекция его орбиты на поверхность Земли (трасса полета ИСЗ) покрывает поверхность земного шара равномерной сеткой. На рис. 2 в качестве примера приведена трасса полета за одни сутки исследовательского ИСЗ «Лэндсат». Рис. 2. Трасса полета ИСЗ «Лэндсат» за одни сутки (по вертикали − широта, по горизонтали − долгота в градусах) Межвитковый сдвиг трассы полета максимален на экваторе и достигает 2,8 тыс. км, поэтому для обеспечения ежесуточного наблюдения поверхности Земли без пропусков необходима исследовательская аппаратура именно с таким полем зрения. На высоких широтах трассы отдельных витков пересекаются, что позволяет повысить периодичность наблюдений этих районов Мирового океана. Суточный сдвиг трассы полета ИСЗ, как отмечено выше, выбирается из условия сплошного «покрытия» поверхности Земли с помощью бортовой аппаратуры, имеющей сравнительно узкое поле зрения. Для каждого конкретного ИСЗ он выбирается отдельно. В последние годы некоторые экспериментальные ИСЗ, предназначенные для исследования Земли, стали выводиться на так называемые стационарные орбиты. Эти круговые орбиты имеют нулевое наклонение, т. е. лежат в плоскости экватора, а их высота над поверхностью Земли составляет около 36 тыс. км. На такой орбите ИСЗ совершает один оборот вокруг Земли ровно за одни сутки, поэтому для земного наблюдателя он кажется расположенным неподвижно относительно поверхности Земли. С борта такого ИСЗ несложно организовать наблюдения за одним и тем же районом Земли, но наблюдения районов самых высоких широт с этих ИСЗ невозможны. Все известные в настоящее время космические методы исследования Мирового океана основаны на регистрации на борту ИСЗ (с последующим анализом) собственного и отраженного электромагнитных излучений океана. В последнем случае предполагается зачастую наличие на борту ИСЗ мощного источника электромагнитного излучения, с помощью которого происходит зондирование океанских вод (так называемые активные методы). Электромагнитные волны, излучаемые в космос толщей или поверхностью Мирового океана, являются, таким образом, для космических океанологов единственным источником информации об океане. Другими словами, все космические методы исследования Мирового океана − по своей сути дистанционные, или неконтактные методы. И еще одна, их особенность − они являются еще и косвенными, или непрямыми методами, когда по зарегистрированной на борту КА интенсивности электромагнитного излучения океана необходимо судить, например, о концентрации тех или иных примесей. При этом величины океанологических параметров, интересующие ученых, можно найти путем проведения сложных математических вычислений. Это второе основное отличие космических методов изучения Мирового океана от традиционных. Указанные особенности осложняют обработку данных, получаемых при зондировании океана из космоса, и принципиально ограничивают область применения космических методов в океанологии. Для обработки данных дистанционного зондирования необходимо привлекать, как правило, нетривиальный математический аппарат и вести обработку первичной информации с помощью быстродействующих мощных ЭВМ. В ряде случаев для калибровки данных, полученных в ходе спутниковых исследований, необходимо привлекать результаты измерений, проводимых с обычных НИС или автономных буйковых станций. В общем, как правило, чтобы извлечь полезную информацию из данных зондирования Мирового океана из космоса, необходимо проделать большую подготовительную и вычислительную работу. Здесь следует также отметить, что информацию об океане, особенно о строении его дна, можно получить в принципе и при исследовании характеристик гравитационного или магнитного поля Земли с борта ИСЗ, но пока эти методы в космической океанологии применения не нашли. Рис. 3. Пропускание электромагнитных волн атмосферой Земли в различных диапазонах Разработанные к настоящему времени космические методы изучения Мирового океана из космоса позволяют проводить исследования во всех известных «окнах прозрачности» (рис. 3) атмосферы − видимом и ближнем инфракрасном (на волнах с длиной от 0,4 до 1,2 мкм), тепловом инфракрасном (3 − 5, 8 − 13 мкм) и радиоокне (1 мм − 10 м). Поскольку решаемые при этом задачи в каждом из этих диапазонов существенно отличаются и существенно различны методы и аппаратура для проведения измерений, рассмотрим отдельно возможности и перспективы исследований океана в каждом из диапазонов. |
||||||||
|