"В.М.Финкель. Портрет трещины " - читать интересную книгу автора В конечном итоге все сводится к той же концентрации напряжений.
Допустим, в куске металла есть большая трещина. Она, естественно, уменьшает сечение, сопротивляющееся приложенной нагрузке, и на оставшееся тело материала действуют большие напряжения. Дело, однако, столь простым случаем не ограничивается. Даже, если бы пластина металла была бесконечно велика, все равно в вершине трещины напряжения как бы аккумулируются и способны в несколько раз, а иногда, как мы уже говорили, на много порядков превышать их средние значения. Это происходит в объеме металла примерно того же размера, что и размер трещины. Интересную форму имеет область, в которой эти напряжения накапливаются - что-то вроде ушей по обе стороны вершины трещины. В этих "ушах" скапливается большая упругая энергия, стремящаяся разорвать металл. И если трещина находится в напряженном металле, она всегда с "ушами". Она может ими даже "хлопать" - при изменении режима ее роста или когда трещина располагается на границе между двумя различными слоями в композитном материале. Это означает изменение распределения напряжений в окрестностях вершины трещины. Об ушной проблеме "читателю уже известно больше того, что знал в свое время Гриффите. Экспериментально и теоретически такое распределение напряжений было подтверждено лишь через 15-20 лет после работ Гриффитса. И тем не менее Гриффите нашел в принципе правильный ответ, хотя и исходил из того, что сконцентрированное упругое поле как бы окружает всю трещину. Когда-то знаменитый физик Р. Вуд писал, что в молодости, начиная читать лекцию по физике, он был впереди студентов на два часа, а к концу лекции их знания сравнивались. Но эти исторические "два часа", отделившие Гриффитса от современников, и позволили Сама задача была решена Гриффитсом следующим образом. Трещина сконцентрировала упругую энергию. Допустим, трещина подросла. Тогда часть упругой энергии разрядится, и этот процесс природе выгоден, как выгодно любое понижение энергии. На что же идет эта энергия? Естественно, на разрушение, решил Гриффите, А точнее на образование двух поверхностей трещины, и связанную с ними поверхностную энергию. Дело в том, что не только металл, но даже мыльный пузырь в граничном слое имеет свою поверхностную энергию, только у металла она в расчете на единицу поверхности в 10- 15 раз больше, чем у мыльной пленки. Хорошо известно, что поверхности жидкостей и жидких пленок всегда стремятся сократиться. В твердых металлах этого в отличие от жидкости не происходит - слишком велика их прочность, но стремление такое всегда есть и в некоторых условиях, например, когда металл находится в расплавленном состоянии, пленка металла очень похожа на жидкую. Поэтому, чтобы создать свободную поверхность, надо затратить работу. Так вот, при образовании трещины возникают две свободные поверхности и каждая из них - носитель запаса поверхностной энергии. Гриффите решил, что вся разрядившаяся упругая энергия идет на создание поверхностной энергии двух половинок разрушенного металла. Допустим, продолжал Гриффите, что образование трещины требует большей энергии, чем освобождающийся запас упругой энергии. Очевидно, что разрушения в этом случае не произойдет. А если наоборот - выделяющейся упругой энергии с лихвой достаточно для покрытия энергетического дефицита, связанного с образованием двух поверхностей трещины? Тогда начинается стремительное развитие трещины и конструкция моста, резервуара, самолета или корпуса ракеты "умирает". |
|
|