"Владимир Ганзен. Системные описания в психологии" - читать интересную книгу автораотношения. Это дает право применять в качестве основы описания различных
систем математическую теорию множеств. В формальной логике важнейшими характеристиками понятия являются объем и содержание, с которыми можно сопоставить некоторые множества. Операции над понятиями во многом аналогичны операциями над множествами. Поэтому в качестве второй общей основы построения системных описаний можно использовать формальную логику. Многие понятия, употребляемые в психологии, имеют размытые, нечеткие границы. Их можно описывать при помощи теории нечетких множеств. Как известно, множество является базовым математическим понятием и не имеет формального определения. В самой семантике рассматриваемого понятия скрыто единство противоположностей: это нечто одно, но в то же время и многое. С понятием множества связаны и другие важные для системного похода дихотомии: множество может быть дискретным и непрерывным, конечным и бесконечным. И задается оно так же, как могут быть заданы компоненты системы, - перечислением и указанием общего признака элементов. Множество может быть разбито на подмножества и классы, в процессе системного анализа система разделяется на подсистемы, целое - на части. Операции над множествами совпадают с операциями над элементами и подсистемами или аналогичны им. Конкретные множества могут восприниматься субъектом; понятие множества усваивается не только логического, но и чувственного познания. Образы и понятия имеют характеристики множества. Так, например, объем понятия - это множество объектов с данным набором существенных признаков, который тоже фиксируемых системой свойств. Совокупность названных фактов и делает понятие множества очень удобным для построения системных описаний психических явлений. Основными понятиями теории множеств, необходимых для описания систем, являются декартово произведение и отношение. Декартово произведение - это операция поэлементоного упорядоченного объединения множеств. Перемножаться могут как одинаковые, так и различные множества, их произведение тоже является множеством. Декартово произведение двух множество можно изобразить в виде прямоугольной решетки, (в случае дискретных множеств) и прямоугольника (в случае непрерывных множеств). Отношением называется подмножество декартова произведения. На одном декартовом произведении могут быть заданы различные отношения. Выделяют неоднозначные, однозначные, взаимо-однозначные отношения. На декартовом произведении одинаковых множеств могут быть заданы отношения эквивалентности, порядка и талерантности. Основными свойствами этих отношений являются рефлексивность, симметричность и транзитивность. Классификация множества состоит в его разбиении на непересекающиеся и взаимодополняющие множества (классы). Ее теоретической основой является отношение эквивалентности. Систематизация предполагает проведение классификации и упорядочение классов. Теоретической основой упорядочения выступает отношение порядка. Систематизация множеств реальных объектов редко приводит к "чистым" классам и "строгим" порядком; как правило, классы пересекаются, а порядки оказываются частично |
|
|