"Владимир Ганзен. Системные описания в психологии" - читать интересную книгу автораПонятие "отображение" и связанные с ним понятия уже давно в разных
контекстах используются в психологии и физиологии. Анализ законов биологических и физиологических отображений Н. А. Бернштейн считал одной из важнейших задач науки [13]. Понятие изоморфизма (одного из свойств отображения) широко употреблялось гештальтпсихологами. Рассмотрим более подробно вопрос о применении понятия отображения и связанных с ним понятий в психологи. В качестве основы воспользуемся математическим определением понятия "отображение". Затем дополним его физическими и собственно психологическими характеристиками. Для определения отображения нужно задать два произвольных непустых множества M и N; правило, закон соответствия элементов этих множеств N=f(M); подмножество C/f/ - область определения функции f; подмножество E/f/ - область значений функции f. Для каждого подмножества A из C/f/ функция f ставит в соответствие некоторое подмножество B из E/f/. Подмножество A называется прообразом, подмножество B - образом A. Конкретный вид отображения будет установлен после выбора всех компонентов приведенного определения. Соответствие между элементами одного и того же множества называется отображением в себя (преобразованием). Отображения могут быть непрерывными и дискретными, параллельными (одновременными) и последовательными, обратимыми и необратимыми. Преобразователи могут содержать или не При лбом преобразовании имеет место как изменение, так и сохранение определенных свойств исходного множества (прообраза). Основными характеристиками сохранения являются инварианты преобразований. Различные уровни изоморфизма свидетельствуют о степени соответствия между двумя различными множествами (прообразом и образом). При гомоморфных преобразованиях сохраняются отношения однозначности, но уже отсутствует условие взаимности. Важным случаем преобразований, описываемых абстракциями автоматов и алгоритмов, являются алфавитные отношения. Благодаря наличию памяти такие преобразования не обладают свойством взаимно однозначности. Соотносимыми в этом случае являются множества слов из букв некоторого алфавита. сами преобразования осуществляются последовательно во времени, поэтому их можно использовать для описания не только результата, но и процесса. Одной из важнейших характеристик преобразований являются их ограничения. О них часто бывает мал известно. Только в отдельных случаях мы располагаем соответствующими теоремами. Так, например, ограничения преобразований, производимых конечными автоматами, устанавливаются теоремами Клини. Преобразования могут объединяться (композиция преобразований). В случаях двух множеств преобразование однократно, при отображении "в себя" оно может может быть повторено многократно. Помимо отдельных преобразований для психологии представляют большой интерес некоторые |
|
|