"Владимир Ганзен. Системные описания в психологии" - читать интересную книгу автора

относительным величинам, то независимо от y/ss/ и y/0/
переходный процесс будет описываться уравнением и соответствующей ему
унифицированной экспонентой (рис. 1, Б). Уменьшение вариантности
достигнуто здесь за счет двукратного применения свойств инвариантности
разностей y/0/-y/ss/, а также отношений
(y-y/ss/)/(y/0/-y/ss/) и t/*, где y/0/ -
начальное состояние системы, y/ss/ -текущая величина реакции,
t - время, * - постоянная величина системы.

На этом примере можно проиллюстрировать два приема преобразования
информации к виду, удобному для сравнения. Первый прием состоит в
использовании нормативных единичных шкал. До преобразования функция
y(t) имела область изменения (y/0/, y/ss/). Новая функция
z изменяется в интервале (0; 1) и является безразмерной величиной.
Второй прием состоит в использовании безразмерных натуральных аргументов
функций. Аргумент t/* является безразмерной величиной, так как
постоянная времени * имеет размерность времени, а целые значения
аргумента кратны постоянной времени системы.

Рассмотрим пример инварианта в психологии. Для исследования резервных
возможностей человека применяется метод дополнительной задачи. Человеку,
выполняющему основную работу, предлагают одновременно исполнять некоторую
дополнительную (задачу). Фиксируется распределение времени между основной и
дополнительной деятельностью. В диссертационной работе В. К. Сафонова [96]
введен коэффициент резервирования (К/рез/), равный

К/рез/=(t/общ/-t/доп/)/t/общ/,

где t/общ/ - общее время, t/доп/ - время на решение
дополнительной задачи, и показано, что для самых различных видов основной
деятельности этот коэффициент изменяется в узких границах
(К/рез/=0,16Ў0,28). Введенный коэффициент резервирования является
безразмерной относительной величиной. Определенный в интервале (0; 1), он
может рассматриваться как инвариант при вариациях видов деятельности,
характеризующий резервные возможности человека.

II. СИСТЕМНЫЙ АНАЛИЗ ("ИЗ ОДНОГО - ВСЕ")

II. 2. 1. Принцип декомпозиции. Начальным этапом анализа любого
множества как системы является группировка его элементов, разбиение на
подмножества. Этот процесс может быть описан в различных терминах.
Разбиение на классы производится на основе отношения эквивалентности. При
этом неявно предполагается, что: а) существует процедура, позволяющая
установить сходство и различие элементов множества, в результате сходные
(неотличимые применяемой процедурой) элементы попадают в один класс -
отличающиеся - в разные; б) нет проблемы выделения самих элементов; в) мы
имеем дело с дискретными множествами. В реальных множествах элементы могут
обладать несколькими признаками. Поэтому одно и то же множество может быть
разбито на различные подмножества.