"Нильс Бор" - читать интересную книгу автора (Данин Даниил Семенович)

Глава четвертая. ПЕРВЫЙ СКАЧОК

Он приехал, а Резерфорд уехал… Надолго — почти до конца апреля. За рулем своей машины новозеландец отправился с семьей и Брэггом на континент. Бора, датчанина, он оставил на попечение своих мальчиков — Ганса Гейгера и Эрнеста Марсдена — несравненных знатоков эксперимента в области радиоактивности. Так бывало со всяким, кто появлялся в резерфордовском клане: прежде всего надлежало пройти экспериментальный курс новой атомистики.

…Бор поселился в Хьюм-Холле — не очень далеко от лаборатории. Отсюда он уже не писал Маргарет об ивах, наполненных ветром. И о прозрачном небе над головой не писал. Вокруг ничто не напоминало о Кембридже — о нестареющей старине, дававшей равные права камням и травам. Здесь со всех сторон обступал человека продымленный город — индустриальный век. И часто нелегко решалось, что там влачится вверху под ветром: вольные облака или принудительные дымы фабричных труб? Избыточно красные закаты были угрюмы — без копенгагенской акварельности. Тусклый снежок податливо превращался в черную слякоть. Это не воодушевляло.

Здесь ощущалась корыстная деловитость века концернов и монополий. Она, эта деловитость, гнала познание вширь — век жаждал все новых практических следствий из прочно установленных истин. И еще никто не думал, что тихое продвижение физиков в глубь материи — иголочное проникновение в атом — обернется когда-нибудь технологическими взрывами, да и просто взрывами, вулканической мощи.

Все же была в Манчестере и своя привлекательность: то, что называется «пульсом жизни», билось там в учащенном ритме. Бор не мог вспомнить, довольствовался ли он в Хьюм-Холле одной комнатенкой или жил в двух. С улыбкой умозаключал теоретически: «Я был доктором и поэтому думаю, что у меня была маленькая спальня плюс рабочий кабинет». Детали поставляла воспоминаниям логика, но сама память молчала. И была права: проблема холостяцкого жилья не имела для него в Манчестере никакого значения. В фокусе жизни стояла работа — только она.

И еще один довод привел он историкам в пользу двух комнат: «Я был старше других (Гейгера и Марсдена)». И не заметил, что ошибся. Ровно наполовину: бакалавр Эрнест Марсден и вправду был младше на четыре года, зато доктор Ганс Гейгер был на столько же старше. Но такие ошибки содержательней точности. Память сохранила ему ощущение старшинства: знатоки эксперимента учили его лабораторным хитростям — «они с такой добротой показывали мне разные вещи», а его мысль тем временем пробивалась через лабиринт теоретических хитростей, где никто не мог показать ему такой простой вещи, как верная дорога. Не мог бы даже сам Папа и Проф, как с вольной почтительностью именовали на обоих этажах лаборатории Резерфорда, вдохновлявшего здесь всех. Впрочем, Бору, будто преднамеренно, был предоставлен случай стать резерфордовцем в отсутствие Резерфорда, когда тот уехал в отпуск — отдохнуть от своей доброй власти.

Как повелось, все трудились с девяти утра без лишних словопрений: Резерфорд не терпел отвлекающей болтовни. Но был час после полудня, когда все собирались в физпрактикуме на чаепитие и выговаривались досыта. Бор слушал. Чаще всего отмалчивался. Иногда — от застенчивости, иногда — потому, что ему еще нечего было сказать. Разговоры, кроме всякой всячины, вертелись вокруг планетарного атома. Никто не выдвигал спасительных идей — ни у кого их не было. Но перед мысленным взором недавнего кембриджца все детальней вырисовывалась замечательно абсурдная и потому притягательная картина: сочетание классической невозможности резерфордовской модели и ее реальной плодотворности!

Те праздничные чаи превратились для него в ежедневные семинары по планетарному атому. И он сразу пристрастился к ним. Позднее, летом, когда он уже весь поглощен был теоретическими выкладками и мог совсем не ходить в лабораторию, это пристрастье все-таки выволакивало его после полудня из уединения в Хьюм-Холле. И он появлялся за общим столом ради живого голоса спорящих коллег. И теперь ему самому все чаще бывало что сказать…

На этих-то чаепитиях уже в первые дни он завязал знакомство с Дьердем фон Хевеши. Вдвоем, со стороны, они выглядели не очень-то совместимой парой. Похожий на столичного скрипача-виртуоза, узколицый мадьяр и большеголовый скандинав, напоминавший пастора-трудягу из отдаленного прихода. Мастер светской беседы и ненаходчивый словоискатель. Но главное: химик-экспериментатор с инженерными склонностями и физик-теоретик с философическим умонастроением. Что могло их свести? А свело мгновенное взаимопонимание: нежданный вопрос — нежданный ответ. И свело надолго — на десятилетия. Манчестер сразу одарил Бора тем, чем Кембридж не сумел одарить за полгода: другом.

Встретились однолетки-чужестранцы на британской земле. А Бор часто потом повторял, что в Англии это совсем непросто — сблизиться с англичанами. Он юмористически объяснял, какая мысль прежде других приходит в голову британцам: «Вот прибыл этот чужеземец — сейчас начнется…» А что начнется? Смешно: разговоры. Их пугало это, точно сами они были молчальниками! Кембриджский опыт уже научил его не обманываться вежливостью английских улыбок. И он уже заметил, как наступал перелом.

— Потом до них доходило, что я не более жажду разговаривать с ними, чем они со мной. Тогда в отношениях появлялась дружественность… — рассказывал Бор историкам.

Между венгром и датчанином неоткуда было взяться на чужой стороне такому психологическому барьеру. Сблизило их и другое.

Хевеши тоже прошел искус Кембриджа. На свой везучий лад — даже не заезжая туда. Он работал в Карлсруэ у выдающегося химика Габера, когда тому померещилось открытие, позже оказавшееся иллюзорным. Предполагаемый эффект требовал лабораторной техники, химикам незнакомой: замера испускания электронов. Молодой венгр отправился зимой 11-го года в Англию. И тотчас встал перед дилеммой — Томсон или Резерфорд?

Потом он объяснил историкам, почему выбрал Резерфорда: «Томсону не нравились идеи, родившиеся не в его голове».

Едва окунувшись в манчестерскую атмосферу, Хевеши без раскаяния изменил Габеру и не вернулся в Германию. Он приобщился к науке, где кончалась традиционная химия и начиналась нетрадиционная физика. Радиоактивность сделалась его пожизненной привязанностью. А планетарный атом — символом веры.

Новообращенные всегда энтузиасты. Они готовы проповедовать. Головы их полны вопросов, а сердца доверия. И весь апрель 12-го года, до самого возвращения Резерфорда, прошел для Бора под знаком Хевеши. Не Гейгера и Марсдена, а Хевеши. И не от опытных физиков, а от начинающего радиохимика узнал он неожиданные для него вещи стимулирующей новизны и непонятности.

Незадолго до переезда Бора в Манчестер Резерфорд получил в дар от правительства Австрии изрядное количество свинца, извлеченного из иоахимстальскои урановой руды. У присланного свинца было одно драгоценное свойство: он содержал излучающую примесь — радий-D. И Резерфорд предложил Хевеши химически отделить этот радий от плебейского металла. В обычной для него манере Папа добавил, что молодому венгру представляется случай доказать, «стоит ли он съеденной им соли».

Скоро выяснилось: очевидно, не стоит. Разделить свинец и радий-D Хевеши не смог! Никакими ухищрениями не смог. Химия обоих элементов оказалась достоверно одной и той же. Но столь же достоверно это были элементы разного атомного веса — 207 и 210. И стало быть, место им было в разных клеточках Периодической системы Менделеева. А по химическим свойствам получалось, что в одной и той же.

Хевеши мог утешиться: он был не единственным, кто обнаружил, что «ничего не стоит». Так, при решении сходной задачи друг Резерфорда — известный американский радиохимик Бертрам Болтвуд — не сумел разделить два других радиоактивных элемента — ионий и торий. А это были элементы тоже заведомо разного веса: 230 и 232. Еще более известный Отто Ган едва не потерял веры в себя по вине третьей химически неразличимой пары — радия-226 и мезотория-228. «Нет, я неумелый химик!» — воскликнул он, не помнивший случая, когда бы ему пришлось отступиться перед аналитическими трудностями.

В таком блистательном сообществе неудачников молодой Дьердь Хевеши мог не чувствовать себя униженным. От этого, однако, проблема только обострялась до крайности: если дело было не в мастерстве химиков, то, стало быть, в устройстве природы!

Открылась вопиющая химическая ересь.

В прочно установленной Периодической таблице элементы располагались по ясному принципу: в порядке возрастания их атомного веса. Любого различия в весе было достаточно, чтобы проявились различия в химическом поведении. А теперь обнаружилось, что это не так. Нечто неизвестное позволяло атомам обладать совершенно одинаковыми химическими свойствами, но разной массой. Принцип Менделеева оказался под ударом.

Могла ли справиться с этой ересью планетарная модель?

У Хевеши не было нужного ответа. Зато в награду за лабораторную неудачу ему пришла на ум великолепная практическая идея: если радий-D и свинец не поддаются разделению, надо использовать это, а не сердиться на природу. Радий-D — излучатель электронов. И он всегда сообщает о своем присутствии чутким физическим приборам. У него словно есть фонарик, которым он может светить во тьме химических реакций. А у свинца такого фонарика нет. Но стоит примешать к обычному свинцу крупицу радия-D, и свинец тоже как бы засветится: всюду, куда он попадет, попадет и радий-D, выдавая его своим излучением. Это была идея трассирующей пули. Идея метода меченых атомов! Со временем она принесла Хевеши Нобелевскую премию, а тогда бессонно занимала его живое воображение. Гораздо больше, чем сама открывшаяся ересь.

И у Резерфорда не нашлось решения возникшей проблемы. Он вообще полагал, что для этого еще слишком мало экспериментального материала. С тем и уехал. И, путешествуя по весенним Пиренеям, напрасным теоретическим построениям не предавался. И уж конечно, не думал, что в это время в Манчестере ими займется тихий датчанин Бор, которому пока надлежало лишь набираться лабораторного ума-разума.

А у Бора было преимущество неведения: он просто не знал, что поиски ответа преждевременны. И нашел, едва начав искать.

А когда начал? Да с той минуты, как Хевеши заговорил о своей неудаче. А когда кончил? Да в ту минуту, как Хевеши договорил.

Потом роли переменились. Это был обмен монологами. Сперва удивленно молчал датчанин. Затем удивленно молчал венгр. Оба не ожидали того, что услышали один от другого. Бор — непредвиденных фактов. Хевеши — их непредвиденного истолкования. Сколько длилась эта сцена — неизвестно. Но все вместе стало превосходной историей без истории — без членения на частности. И потому ее нельзя восстановить. И Хевеши и Бор независимо друг от друга вспоминали в беседах с историками, что все произошло сразу. Это — через пятьдесят лет. когда память обоих уже не различала в гуле былого шума подробностей.

Семидесятисемилетний Бор: …Хевеши рассказал мне, что существует больше радиоактивных элементов, чем мест в Периодической таблице. Я об этом ничего не знал. Но мне стало тотчас абсолютно ясно, что это значило…

Семидесятисемилетний Хевеши: …Бору это было совершенно ясно с самого начала.

У них, как у сообщников, появилась до возвращения Папы неиссякающая тема для обсуждения: возможности внутренней структуры планетарного атома.

Датчанин извлек тогда из неизвестности физические истины такой простоты, что сегодня кажется непостижимым: отчего же другим они не дались в руки еще раньше? (Вечное недоумение, сопутствующее всей истории науки и всякий раз обреченное оставаться без ответа.)

…Если существуют химически абсолютно неразличимые элементы разного атомного веса, значит, менделеевский принцип Периодической системы нуждается в пересмотре: не от различий в весе зависят различия в химических свойствах атомов. Провозгласить это надо без всяких уловок.

А разве возможны были уловки?

Сколько угодно. Разум дьявольски изобретателен. Так, одну уловку придумал Дж. Дж. Из двух химически неразличимых элементов, сказал он, более тяжелый вовсе не элемент, а соединение более легкого с атомами водорода! Кажется, он не решился выступить с этой идеей в печати. Но она стала известна. И вызывала улыбки химиков: отличить водородистое соединение от чистого элемента они уж как-нибудь да сумели бы…

Для истинного понимания возникшей химической ереси только одно и надо было: довериться ей. Довериться природе непредвзято, как в детстве, когда даже в сказках видится естественный ход вещей. Бор доверился раньше других.

«Труден первый шаг…»

Если не атомный вес определяет химические свойства элементов, то что же? Сейчас рассудим. Все прояснится само собой. (Приоткрытый рот. Отсутствующие глаза.)

…Согласно планетарной модели масса атома — вся в его ядре. Это оно весит. Электроны-планеты не в счет, так они легки. Атом радия-210 тяжелее свинца-207 потому, что ядро у него массивнее. А химия — та же. Стало быть, не ядра диктуют атомам их химическое поведение. Но если не ядра, то электроны! Больше в атомах ничего нет. Значит, у химически неразличимых атомов должны быть неразличимо одинаковы электронные структуры. Однако всякий атом нейтрален: электронов в нем ровно столько, сколько способно удержать вокруг себя положительно заряженное ядро. И следовательно, ядра радия-210 и свинца-207 хоть и разной массы, но равного заряда.

Логика хороша своей неумолимостью. Во мгновение ока откристаллизовалась прозрачная закономерность: химическое поведение атомов зависит от величины заряда атомного ядра!

Все-таки зависит от ядра?.. Да, но не от его массивности, как думали до тех пор все, а от его заряженности, как не думал до тех пор никто. А это меняло самый принцип построения Периодической, таблицы: элементы следовало располагать в порядке возрастания ядерного заряда. А заряд не может быть дробным. От элемента к элементу он может увеличиваться только скачком — не меньше чем на единицу. У первого элемента, водорода, заряд ядра и вправду наименьший; +1, а у второго, гелия: + 2. Это хорошо известно. Может быть, так оно и идет до конца таблицы — до самого урана?

Периодическая система была гениальным обобщением-догадкой Менделеева: он ведь ничего не знал об устройстве атомов. Что же угадал он в природе? Почему между любыми двумя соседними клеточками в его таблице уже нельзя безнаказанно втиснуть других клеточек? Отчего элементы образуют прерывистую последовательность?

Теперь это становилось ясно.

Многое теперь легко объяснялось бы, будь справедливо это предположение: Атомный номер элемента в Периодической системе просто равен Заряду ядра! Но тут уж для безупречного логического вывода экспериментальных данных было и впрямь недостаточно. Мало ли какая усложняющая хитрость могла понадобиться природе… Однако Бор по своей натурфилософии (прав ли он был или не прав) склонялся скорее к вере в простоту природы, чем в ее расточительное хитроумие. И он решился утверждать, что во всей таблице, как и в ее начале, ядерный заряд увеличивается от клеточки к клеточке ровно на единицу, а не как-нибудь иначе.

Бор объяснил Хевеши — и этим поверг его в изумление еще больше, чем прежде, — какими химическими свойствами будет обладать элемент, рождающийся при альфа-распаде радиоактивного атома. Такой атом теряет альфа-частицу, имеющую заряд +2. Поэтому у нового атома заряд ядра будет на две единицы меньше. Где место для новорожденного в системе Менделеева? Очевидно, на две клеточки левее — ближе к началу таблицы. Это смещение и укажет на свойства нового элемента. Пораженный Хевеши, прикинув в уме все известные радиохимикам случаи альфа-распада, мог на ходу проверить, что арифметика датчанина всюду работает безошибочно.

Эта арифметика и убеждает, что Бор уже тогда — в апреле 12-го года — открыл закон Атомного номера. И попутно объяснил закон Радиоактивного смещения.

На пальцах открыл и объяснил. В разговорах с новым другом. Но тут ведь содержалась еще одна конструктивная идея, для понимания планетарной модели фундаментальная: если химическими процессами в мире заведуют атомные электроны, то радиоактивными превращениями — атомные ядра.

Снова кажетея: да разве это не было ясно всем?

Откуда же еще могли излучаться тяжелые альфа-частицы, кроме как из ядра?! Однако существовал и бета-распад: излучение легких электронов. И разве не естественно было думать, что они-то уж приходят не из глубин атома? Так многие и думали: это электроны из тех, что вращаются вокруг ядра. Но одно смущало: бета-распад, как и альфа-распад, изменял химию элемента навсегда!

Бор понял: бета-лучи тоже вырываются из ядерных глубин. И потому рождается новый элемент: раз выбрасывается отрицательный электрон, значит, положительный заряд ядра увеличивается на единицу. И новому элементу принадлежит место на одну клеточку вправо от исходного — на один шаг дальше от начала таблицы.

Хевеши мог и это подтвердить всем опытом радиохимика. Объяснялся еще один закон Радиоактивного смещения — для бета-распада. Снова попутно. И как впечатляюще все связывалось в единую цепь! Однако же — и это психологически замечательно — тут уж он отказался поверить Бору до конца. Может быть, устал изумляться так легко доставшейся ясности?

Венгр и датчанин сидели в домашнем кабинете Резерфорда на Уилмслоу-роуд. Было воскресенье — послеполуденный час. Хевеши нетрудно было вспомнить эту подробность: по будням Папа не приглашал сотрудников в гости, да еще днем. Воскресное приглашение служило знаком дружеской расположенности Резерфорда.

Он недавно вернулся с континента и, конечно, сразу же поспешил войти в дела своих мальчиков. О дискуссиях Хевеши — Бор, разумеется, шли уже толки по лаборатории. Одобрительные — в устах немногих, скептические — в устах большинства. Резерфорд не присоединился ни к тем, ни к другим. Заговорила его натура волевого исследователя: властвовать над соблазнами и легкого теоретизирования, и легкой критики. Или, как говаривали римляне, «спешить медленно!». (Он, любивший в детстве латынь, знал этот завет. И всегда спешил, но так, что под его эгидой до сих пор не выходило в свет ни одной торопливо-ошибочной работы.) За время его путешествия эксперименты не принесли ничего нового. И он не видел причин менять свое убеждение: рано еще делать далеко идущие выводы из модели планетарного атома. Она сама оставалась еще противозаконной. И построения Бора выглядели спасением химической ереси посредством физической ереси.

— Я сказал ему, что это могло бы стать окончательным подтверждением его модели, — вспоминал Бор.

Резерфорд уклонился от такого искушения. И не запел шутливо, как то бывало обычно в минуты бесспорных удач: «Вперед, Христово воинство!..» И не повелел, как обычно: «Принимайтесь-ка за статью, мой мальчик, да без промедлений!»

Но втайне он был изумлен не меньше, чем Хевеши. И он увидел, что этот молодой доктор из Копенгагена знает о планетарном атоме уже больше, чем ведомо ему, Резерфорду. И способен на идеи покоряюще содержательной простоты. И, встречая датчанина в лабораторной комнате Гейгера — Марсдена, он теперь внимательней вслушивался в его неуверенную английскую речь.

…И вот они оба, Хевеши и Бор, слушали в домашнем кабинете Папы его рассказы о Пиренеях и сами рассказывали всякое разное. Это любил хозяин. Не единой физикой жив человек! Резерфорд признавался, что, как ни почитал он Марию Кюри, а все же избегал досужих бесед с нею: она всегда говорила только о науке. Хевеши знал это, но в то воскресенье сам не удержался: отбросив свою виртуозную светскость, он вдруг спросил хозяина дома тоном последней надежды на окончательный ответ:

— Альфа-частицы приходят из ядра. Это несомненно! Но откуда приходят бета-электроны?

Ответ был незамедлителен. Однако совсем не тот, какого ждал в ту минуту Хевеши. Резерфорд сказал коротко и кротко:

— Спросите Бора…

Возникла пауза: верховный судья в делах радиоактивности отсылал вопрошающего к новому авторитету! Случилось небывалое.

Это происшествие точно так же было воспринято через полвека, когда Хевеши рассказывал о нем физикам-историкам — Эмилио Сегрэ и Джону Хэйлброяу.

Сегрэ: Это чертовски интересно… Он сказал: «Спросите Бора!»

Хэйлброн: Резерфорд действительно верил, что Бор это знал?

Хевеши: О да! Он никогда не оказал бы «спросите Бора», если бы не был уверен, что у того в самом деле есть готовый ответ.

…Право, в то воскресенье Бору выпала лучшая минута за все время его стажировки в Англии. Оказавшийся ненужным Томсону, он почувствовал, что нужен Резерфорду. И больше того — атомной физике. Он стоил соли, которую съел!

Итак, дела складывались отлично. И в голову уже не приходило кембриджское «я так мало умею и знаю». Найдя понимание и сочувствие, он нашел себя. 12 июня ушло знаменательное письмо к Харальду:

«Я начал разрабатывать маленькую теорию, которая, как ни скромна она, быть может, прольет некоторый свет на ряд проблем, связанных со структурой атомов. Думаю вскоре опубликовать короткую статью об этом. Ты легко представишь себе, как это приятно — работать здесь, где… профессор Резерфорд проявляет такой живой и действенный интерес ко всему, в чем, по его мнению, «что-то есть».

…У меня так много замыслов, но кое с чем придется повременить…»

Суток вдруг перестало хватать для работы. Пришла та самая пора, когда он стал выходить из дома лишь ради лабораторных чаепитий. Искушающе звало за город раннее лето на пологих холмах ланкастерской равнины. Но и это лето 12-го года, как прошлогоднее, когда он только готовился к поездке в Англию, было не для него. Он стал добровольным затворником.

«Короткая статья» и «маленькая теория» накрепко привязали его к столу. Началась доподлинно теоретическая работа, как, бывало, говаривал его будущий ученик Лев Ландау — «безжалостное истребление бумаги». Еще до письма Харальду в те же июньские дни ушли два письма к Маргарет со словами о новой идее, осенившей его, и с повторяющимся сладостным признанием: «…я тружусь день и ночь».

Теперь день и ночь перед его мысленным взором маячили заряженные частицы, летящие через вещество. Альфа-частицы.

В этом было нечто почти принудительное для школы Резерфорда. Трудно вообразить его ученика, хотя бы однажды не повозившегося с «веселыми малышами», как нежно называл их сам Папа. У него были глубокие основания для такой нежности: это ведь они, альфа-лучи, сказали ему первое слово об атомном ядре. Они оказались тонким инструментом для прощупывания недр материи. И его мальчикам всегда предоставлялся случай поработать с этим инструментом. В эксперименте или в теории — все равно.

Незадолго до появления Бора в Манчестере таким случаем воспользовался штатный математик лаборатории — двадцатипятилетний Чарлз Гальтон Дарвин (внук «настоящего Чарлза Дарвина», как выразился Нильс в письме к Харальду). Он пришел в университет Виктории тоже из Кембриджа, но двумя годами раньше. Для Бора он стал одним из тех манчестерцев, «с которыми можно поговорить». Той весной Дарвин закончил работу «Теория поглощения и рассеяния альфа-лучей». Бор увидел ее уже в напечатанном виде 1 июня, когда раскрыл свежий номер Philosophical Magazine со своей собственной маленькой теоретической заметкой — единственной, написанной в Кембридже… Похоже, тогда-то, 1 июня, его воображением и завладели альфа-частицы…

Не они сами, а их полет сквозь вещество — тернистый путь сквозь скопления атомов. Потому тернистый, что первоначальная энергия движения частицы постепенно истощается в ее взаимодействиях со встречными атомными электронами и атомными ядрами. И она затеривается в веществе, как выдохшийся бегун в толпе. Картина этого процесса должна была правдиво отражать и свойства летящей частицы, и характер препятствий на ее пути: структуру атомов! Такая картина — двойной портрет. И черты второго лица — атома — всего существенней.

Так уж оно получалось тут, в Манчестере: любой исследовательский шаг выводил на магистральную дорогу атомного века.

Двойной портрет, нарисованный Дарвином, не произвел на Бора впечатления достоверного. Дарвин надеялся, что его теория позволит судить о границах атомов — об их размерах. Но получилось у него нечто неправдоподобное: чем тяжелее были атомы, тем меньше оказывались их диаметры. Это противоречило духу модели Резерфорда — от увеличения числа планет-электронов атом мог только расширяться, а никак не сморщиваться. Короче: теория, исходившая из планетарной модели, с требованиями самой модели не считалась. И эта логическая несообразность никого особенно не смутила.

Не заметил ее сам автор — «здешний юный математик», как с оттенком взрослой снисходительности представил его Бор в одном письме. Но Дарвин был всего на полтора года моложе, и потому интонация неоспоримого старшинства звучала в устах Бора не очень-то оправданно. Однако была она непреднамеренной: просто он продолжал жить с ощущением старшинства своей мысли. (Ему ведь казалось, что и Хевеши, ровесник, был младше него!)

Приближенное согласие с некоторыми экспериментами у Дарвина все-таки наблюдалось. Очевидно, одного этого было достаточно Резерфорду для милостивого суда. А молодому Бору — нет. И в письме к Харальду он тогда ничем не смягчил своего приговора теории дарвиновского внука как ни симпатичен был ему этот длинноногий британец, широко думающий и добросердечный.

«…Мне сдается, что его теория совершенно неудовлетворительна по основной концепции…»

Эта критичность без снисходительности была не только возрастной. Не относился ли Бор к идеям планетарной модели уже ревнивей, чем сам Резерфорд?!

И вот: «…я тружусь день и ночь».

Затворяясь попеременно то в своей холостяцкой квартирке, то в лабораторном кабинетике, он трудился над собственным вариантом двойного портрета. В сущности, он хотел установить одно: раз летящую альфа-частицу тормозят атомы вещества, как тут сказывается планетарность их строения?

Он взглянул на атомные электроны глазами звездочета. Легчайше подвижные, они реально представились ему на планетных орбитах вокруг ядра, и он увидел, как пролетающая мимо заряженная частица искажает эти орбиты. Или возмущает — на языке астрономов. И в отличие от Дарвина он увидел, как на орбитальное вращение электронов накладываются их вынужденные колебания под мимолетным, но серьезным воздействием внешней силы. И понял, как подсчитать энергетические траты альфа-частицы на такое попутное одаривание атомных электронов дополнительным движением.

То, что назвал он своей небольшой идеей, помогло ему понять именно это. Ему подумалось: да ведь и свет, пронизывая вещество, растрачивает свою энергию похожим образом — те же атомные электроны одалживаются энергией у набегающих электромагнитных волн. Надо было лишь сделать эту параллель математически продуктивной. Потом в обещанной короткой статье он объяснил:

«…намеченная здесь теория торможения движущихся в веществе заряженных частиц во многом подобна обычной теории рассеяния света».

Суммарно: он отважился сопоставить, как нечто схожее между собой, поток альфа-частиц разных энергий и пучок световых лучей разной частоты колебаний. Он сопоставил частицы и волны…

А на дворе стояло лето 1912 года, и до рождения квантовой механики оставалось еще полтора десятилетия. И при желании нынешний историк физики может увидеть в той боровской параллели ранний намек на допустимость странного представления о «частицах-волнах». Прав ли будет историк? Возможно. Но не бесспорно.

А психологически бесспорно вот что: с апреля он жил в непроходящем ПРИСТУПЕ ПОСТИЖЕНИЯ. Его бил озноб понимания — лихорадка сосредоточенности. В уединении его мысль, как неустанный радар, обшаривала тьму атомного пространства. И были повороты луча, при которых его проницательности открывалось больше, чем он сам мог тогда освоить…

Он вовсе не из ложной или истинной скромности, сообщая в письмах о своей идее — теории — статье, прибавлял эпитеты: небольшая — маленькая — короткая. Такими они действительно виделись ему. Он знал, что его вариант двойного портрета, хоть и будет достоверней дарвиновского, натуры все равно не исчерпает. Да и работа не все время шла по восходящей. Математические выкладки иногда заводили в тупик. И на исходе пятой недели своего затворничества, 5 июля, он написал Маргарет о «взлетах и падениях» за письменным столом. Правда, лишь затем написал, чтобы тут же с улыбкой уверить ее:

«Все-таки положение с этими крошечными атомами, пожалуй, не выглядит слишком уж безнадежным».

Маленькая теория разрасталась. Короткая статья становилась длинной. И, как обычно, он вползал в цейтнот. К середине июля он почувствовал, что не успевает:

«…Я полагаю, мне удалось прояснить кое-какие вопросы; но, понимаешь, разработка их давалась и дается не так быстро, как я имел глупость рассчитывать. Надеюсь, однако, что еще до отъезда у меня будет готова часть статьи и я смогу показать ее Резерфорду…»

Хотя он и надеялся, но в голосе его не было уверенности. А писал он все это Харальду 17 июля, в точности зная, что ровно через неделю, 24-го, отбудет из Манчестера домой, дабы еще через неделю — 1 августа 1912 года — навсегда «сочетаться узами брака» с Маргарет Норлунд, ставшей для него за время их двухлетней помолвки и почти годовой разлуки всепросветляющей необходимостью жизни.

Может быть, он все-таки успел бы до отъезда сделать намеченное, когда бы по дороге не задал самому себе еще одной задачи. Сверхтрудоемкой.

Даже в предотъездной спешке («Я так занят, так занят», — писал он 17-го) длился неостановимый приступ творчества. И 19-го в поспешном тексте почтовой открытки он дал понять Харальду, что главной заботой его мысли стало еще нечто новое — «оно выросло на почве все той же моей небольшой идеи». Однако скромные эпитеты тут уж не годились:

«ВОЗМОЖНО, МНЕ ОТКРЫЛОСЬ НЕЧТО СУЩЕСТВЕННОЕ В СТРУКТУРЕ АТОМА… КУСОЧЕК РЕАЛЬНОСТИ».

Он принялся за дело, прервав на середине беловик статьи о торможении. Он не мог трезво соблюсти очередность. Немыслимо было покинуть Манчестер хотя бы на время, не вручив Резерфорду письменного изложения новых догадок: они относились к наиглавнейшей из проблем — к загадке устойчивости планетарного атома.

И — чем черт не шутит! — может быть, обещали ее раскрытие.

В те предотъездные дни начала расти на его столе рядом с обычной рукописью довольно необычная. Такое впечатление, будто ему хотелось каждый пункт волновавшей его программы исчерпать на одном листе бумаги. Как художнику рисунок: нельзя же делать его «с продолжением» и вылезать за край листа. Но ему не хватало листа. И он подклеивал снизу другой… На столе вытягивалась единая тематическая полоса — взлетная дорожка для его мысли.

Семь полос разной длины составили Памятную записку, предназначавшуюся единственному читателю. Самой длинной оказалась четвертая полоса: о строении молекул. Самой глубинной — вторая: об атомных размерах.

Проблема размера атомов была проблемой их устойчивости. Это понимали все. Модель Резерфорда не давала никакой опоры для суждения об атомном объеме. Иначе — о протяженности электронного роя в пространстве вокруг ядра. Все с охотой повторяли, что для каждого электрона на его орбите предуготована классическими законами одна судьба — падение на ядро. И не видно было, какое могло найтись объяснение труднооспоримому факту, что мир все-таки существует.

И существует вполне надежно.

И довольно давно.

И не собирается, съежившись, вдруг исчезнуть.

Другими словами, нечем было оправдать устойчивость атомных размеров. Пусть они меняются, эти размеры, но есть же, очевидно, минимальные — такие, что уж дальше электронный рой сжиматься не способен. Какая может быть тому причина?

Бор подумал: а что, если электроны вращаются вокруг ядра не поодиночке на каждой орбите, а группами? Это была не слишком новая идея электронных колец. Ее разрабатывал для своего атома-кекса Дж. Дж. Томсон. Но там отсутствовало положительно заряженное ядро и отрицательным изюминкам-электронам некуда было падать.

В планетарной модели электронному кольцу грозило неминуемое сужение под действием притягивающего ядра. Однако, решил Бор, электроны в кольце, отталкиваясь один от другого, будут наверняка мешать этому сжатию. И потому возможно равновесие противоборствующих сил. Устойчивое движенье.

Вот, казалось бы, и выход из тупика!

Он подсчитал, что для такой устойчивости в электронном кольце не должно быть слишком много электронов. Получалось не больше семи. А когда заряд ядра больше семи, будет формироваться второе кольцо. А потом третье, четвертое, пятое… Химическое поведение атомов, наверное, зависит от самых подвижных электронов — от внешнего кольца. В нем тоже может быть от одного до семи электронов. Не содержало ли это намека на разгадку старого недоумения химиков: почему валентность элементов меняется как раз от единицы до семи?

В конце первой полосы той необычной рукописи появилась фраза, написанная с очевидным волненьем:

«Кажется, все это… надежно указывает на возможность объяснения Периодического закона химических свойств элементов… с помощью рассматриваемой атомной модели».

Чувствуется: его доверие к планетарному атому стало еще глубже, чем было. И все же пока оно оставалось только доверием — производным веры. Он не заблуждался: из устойчивости его электронных колец вовсе еще не следовала устойчивость атомных размеров. И этим разочаровывающим утверждением он начал вторую полосу рукописи.

Беда была в том, что законы ньютоновской механики позволяли электронному кольцу вращаться на любом расстоянии от ядра. Разве нельзя, крутя на веревке камень, произвольно укорачивать или удлинять веревку? Он лишь станет вращаться то с большей, то с меньшей частотой. Так и с кольцами, придуманными Бором для спасения планетарного атома: от изменения их радиуса изменялась бы лишь частота облета электронов вокруг ядра. А механика Ньютона не запрещала частоте обращения планет вокруг солнца быть какой угодно. И радиус их орбит мог быть каким угодно. Оттого и сколь угодно малым — даже неотличимым от размеров ядра — мог быть и размер атомов.

Бор вынужден был умозаключить:

«Кажется, в законах механики нет ничего, что позволяло бы предпочесть какие-нибудь значения радиуса и частоты вращения всем остальным».

Это было маленькое открытие. Но безрадостное: открытие как закрытие. Признавалось, что у классической механики нет способов справиться с устойчивой величиною атомов…

Однако придумала же природа какой-то механизм сохранения определенных атомных размеров, чтобы мир мог существовать! Оставалось предположить, что этот механизм основан не на классических правилах.

В духе тогдашних размышлений молодого Бора рискованное решение напрашивалось сразу. Надо было лишить электроны в кольцах классического права вращаться с любой частотой. Вот когда бы для каждой энергии — одна-единственная частота, а остальные запретны! Тогда электроны принуждены были бы двигаться по орбитам на строго определенных расстояниях от ядра.

Без подробностей: надо было взять да и провозгласить от имени природы существование в микромире неклассической закономерности. Должен ли был испытать смущение манчестерский затворник, когда подвергся такому искушению? Но могла ли не смутить его мысль, что теперь, вращая камень с неизменной энергией, уже нельзя было бы ни укорачивать, ни удлинять веревку: новый закон превращал бы ее в стержень. И танцовщица на льду, изображая живой волчок, тщетно пыталась бы раскидывать или сводить руки, чтобы под аплодисменты зрителей наглядно менять частоту своего верчения на месте: теперь уж ей это никак не могло бы удаться…

Антифизический вздор? Но что, если именно такой ценой обеспечивается устойчивость атомов?!

Как бы то ни было, но предложенную им закономерность Бор осмотрительно назвал гипотезой — не громче. И записал ее сначала чисто словесно — без математики. И добавил без всякого торжества:

«…Здесь не будет сделано никаких попыток дать этой гипотезе обоснование с точки зрения механики (поскольку это представляется делом безнадежным)…»

Взамен обоснования логикой он привел оправдание пользой: «возможностью объяснить целую группу экспериментальных результатов». И перечислил их в четырех пунктах. Но одного пункта там зияюще недоставало: не говорилось ни слова об атомных спектрах. Не было ни намека на обещание расшифровать эти многоцветные ведомости по расходу электромагнитной энергии в атомах. А ведь это значило, что он еще не знал главного: как справиться с классическим требованием к электронам-планетам — непрерывно допускать свет при вращении и от потери энергии падать на ядро? Ничего конструктивного на эту тему не было в его догадках. А он писал так, точно предчувствовал неминуемый свой успех.

В подтексте его Памятной записки лежало пока еще и в самом деле только предчувствие, что есть глубокая связь между двумя «минимальностями» в природе:

— существованием минимального физического действия, меньше которого не бывает, и — существованием минимальных размеров у электронной оболочки в атоме, за пределы которых она сжаться не может.

Это была лишь смутно почувствованная связь между уже открытым квантом действия и еще не открытым принципом устойчивости атомных миров.

Как Резерфорд, он доверял своей интуиции. И ему не показалось преувеличенным предсказание, что с помощью его гипотезы,

«по-видимому, удастся подтвердить справедливость взглядов Планка и Эйнштейна на механизм излучения».

Таков уж был размах его оптимизма: от истолкования Периодического закона до подтверждения квантовой теории!

Сорок девять лет спустя, вспоминая Резерфорда, Бор написал:

«В раннюю пору моего пребывания в Манчестере, весной 1912 года, я пришел к убеждению, что строение электронного роя в резерфордовском атоме управляется квантом действия (постоянной Планка h)».

Весной?.. Но ведь только на исходе четвертого месяца своей манчестерской жизни, 22 июля, закончил он Памятную записку Резерфорду. А лишь в ней эта идея была выражена им впервые, да и то еще в неявной форме.

Проще всего счесть утверждение Бора простительной ошибкой памяти: что за важность несколько месяцев рядом с громадой сорока девяти прожитых лет! Вообще-то говоря, и впрямь что за важность? Но жизнь замечательного исследователя, сумевшего оставить нам узелки на память — череду открытий и счастливых мыслей, — представляется потомкам историей именно этих открытий и этих мыслей. Она непохожа на равномерно текущий поток. Эта жизнь как драматическое действо, где акты и антракты постоянно меняются местами: акты сокращаются до дней, антракты растягиваются на годы. Само историческое лицо, оглядываясь на прожитое, осознает эту неравномерность еще острее тех, кто приходит после. И семидесятипятилетний Бор, рассказывая о Резерфорде, полон был сознания историчности манчестерского старта в познании микромира. Потому-то, когда ему захотелось проследить до самых истоков зарождение квантовой теории атома, он заговорил не вообще о Манчестере, а уточняюще — о ранней поре своего пребывания там.

Какая же странная вышла ошибка, если это была ошибка…

Ведь она означала бы, что он забыл не просто даты (они легко забываются) и волновавшие его ожидания (они не забываются вовсе). Среди прочего он должен был бы забыть и о своей предотъездной, а никак не ранней, Памятной записке Резерфорду. Как же это-то допустить?

Он никогда не публиковал ее, но всегда хранил.

Впрочем, не с самого начала. Детективная деталь: одна полоса из той семиполосной рукописи — третья по нумерации — успела исчезнуть. Это интересно. Но не потому, что таинственно. Полоса запропастилась по обыкновенной небрежности к черновикам. Не сразу пришло ощущение ценности этого документа. Он ощутил ее только, когда все надежды и предсказания, отразившиеся в той Памятной записке, действительно оправдались — хоть и не совсем так, как он сперва ожидал. Должна была прошуметь серия его статей 13-го года — «О строении атомов и молекул», а затем должен был возникнуть, как всегда запоздалый, интерес к «истории вопроса», чтобы однажды он разыскал в ящиках письменного стола старую рукопись, спрятал уцелевшие полосы в конверт и надписал:

Первый набросок соображений, составивших содержание работы «О строении атомов и молекул» {Написан для того, чтобы ознакомить с этими соображениями проф. Резерфорда) (Июнь и июль 1912)

Июнь — июль… Конечно, он живо помнил, как спешил с этим наброском в последние манчестерские дни. Поэтому самое любопытное, если в словах старого Бора вообще не было ошибки. Тогда, стало быть, еще до Памятной записки, в апреле — мае (и впрямь «весной 1912 года») у него был уже какой-то предвариант квантового спасения планетарного атома. А это со всей несомненностью стоило бы расследования. Правда, Леон Розенфельд и Эрик Рюдингер искали начало начал. И нашли «самое первое указание» на квантовый замысел Бора в уже знакомой нам открытке к Харальду 19 июля:

«Возможно, мне открылось нечто существенное в структуре атома…»

Но с архивами всякое бывает, и, может быть, там еще прячется более ранний след будущего великого успеха…

Так или иначе, но не торным оказался путь от верно угаданного принципа до жизнеспособной теории. И когда 22 июля 12-го года, за два дня до отъезда из Манчестера, Бор входил в кабинет-лабораторию Резерфорда с необычной своей рукописью на семи полосах, за плечами у него была только треть этого пути.

Их встреча на том промежуточном финише затянулась надолго и рисуется так…

Бор принес с собою Памятную записку затем, чтобы вручить ее Папе. Иначе к чему было пороть спешку в предотъездные дни?! Он рассчитывал завтра, в крайнем случае — послезавтра, снова увидеться с Резерфордом и услышать на дорогу его мнение. Но Резерфорд возразил, что завтра, в крайнем случае — послезавтра, уезжает сам. В Виндзорский замок — предстоял дворцовый прием в связи с 250-летием Королевского общества. («Мэри, бедняжка, уже купила мне для этой цели дурацкий цилиндр!») В общем, выбора не было: Резерфорд повелел Бору изложить свои идеи незамедлительно — вот у этой черной доски…

Так получает естественное объяснение не очень понятный казус: рукопись Памятной записки почему-то сохранилась не среди бумаг Резерфорда, а в архиве Бора, хотя написана была, конечно, в одном экземпляре.

Бор говорил. Резерфорд молчал.

Любого другого он без всякой вежливости давно бы прервал на полуслове: «Ступайте-ка домой, мой мальчик, и продолжайте думать — от ваших яблок оскомина, они еще не дозрели!» Но с Бором у него все происходило иначе, чем с другими. Отчего-то исчезала разница в четырнадцать лет и различие в их положении на иерархической лестнице. Правда, для Резерфорда возраст и ранг часто ничего не значили: он говорил «мой мальчик» профессору Иву, который был на девять лет старше, и без должной почтительности «ставил на место» даже архиепископа Йоркского. Может быть, он чуял в молодом датчанине тихую силу, способную одолеть его собственную громкую силищу? Он любил подтрунивать над чистыми теоретиками: «Они ходят хвост трубой, а мы, экспериментаторы, время от времени заставляем их сызнова поджимать хвосты!» Но на Бора эта ирония не распространялась. Когда Резерфорда спрашивали, почему он относится к копенгагенцу по-другому, чем к прочим теоретикам, следовал ответ: «Потому что Бор — это другое». И неожиданно добавлял: «Бор — футболист». И не уточнял, плохой или хороший. Резерфорду нравилось, когда и о нем говорили в таком же ключе, земном и вещном: «фермер». То было насмешливое самоутверждение мускулистой духовности — веселая игра плоти против бесплотности.

Бор говорил. Резерфорд молчал.

Он бывал с Бором во сто крат терпеливей, чем с другими. И все-таки Бору запомнилась его тогдашняя нетерпеливость. Резерфорд не захотел вникать в математические подробности, а физическими не был удовлетворен. Но Бор не услышал «ступайте-ка домой, мой мальчик».

…В том, что сказал Резерфорд, прервав наконец монолог Бора, прозвучал уже ставший обычным в его отношениях с датчанином совершенно нерезерфордовский совет — не спешить!

Но почему не спешить? Такое впечатление, точно Резерфорду виделись заминированными все теоретические подступы к планетарному атому. Тут ощущается своего рода психологическая травма. Нужно только представить себе, сколько попыток как-нибудь оправдать свою модель теоретически Резерфорд предпринял сам! Попытки были отчаянными. За ним водились такие молчаливые посягательства на решение не поддававшихся решению задач. Но, по свидетельству П. Л. Капицы, разговаривать о своих неудачах и незаконченных работах он не любил.

Однако психологические догадки не в большой чести у историков науки, хотя она — дело человеческое. И тогдашняя осторожность Резерфорда истолковывается сегодня историко-научно: он не был идейно подготовлен к квантовому освоению собственной атомной модели… Охотно или нехотя, это повторяют многие.

А как же быть тогда с его сердитым письмом 11-го года Вильяму Генри Брэггу о континентальных физиках, не утруждающих свои головы физическим обоснованием теории Планка?! И как быть с его бдительным интересом к боровским попыткам выстроить квантовый костяк для планетарного атома?! Этот хорошо документированный интерес Бор не раз благодарно признавал вдохновляющим.

Все осложняется лишь тем, что о «неготовности Резерфорда» обмолвился однажды сам Бор: он невольно соотнес свою глубинную теоретическую подготовленность к квантовому прыжку в неизвестность с резерфордовской недостаточно оснащенной готовностью и заключение вывел из этого сравнения. Другого смысла его слова не имели. И ведь заговорил он об этом в беседе с историками пятьдесят лет спустя, когда ему нужно было рельефно оттенить высоту своей позиции теоретика в Манчестере 12-го года.

…Кроме антирезерфордовского совета «не спешить», Бор услышал вполне резерфордовское напутствие: бросить возню со сложными атомными системами, а отдаться простейшей — водородному атому. (Через полгода, накануне полного успеха, Бор, как образцово воспитанный мальчик, с признательностью отметил в длинном письме к Папе, что исправно следовал его напутствию.)

Прощались они ненадолго, но с полным ритуалом.

Слышится, как шумно желал ему Резерфорд счастливого медового месяца и скорого возвращенья. Обняв за плечи, провожал до порога. И не без удивления ощущал под ладонью упрямую мускулистость датчанина. И говорил, что городская бледность, может быть, к лицу другим теоретикам, но не ему, Бору. Надо отвлечься от письменного стола, погонять мяч, поработать с парусом… А у смущенно улыбавшегося Бора руки были, как в школьно-студенческие времена, все в мелу, и папку с обеими рукописями — Памятной запиской и половиной статьи о торможении — он локтем прижимал к боку, чтобы не замелить и ее. И выглядело это так, точно он никуда не уезжал, а только оставлял на четверть часа аудиторию, поскольку прозвучал звонок на перемену.

В четверг 1 августа 1912 года состоялось бракосочетание двадцатидвухлетней Маргарет Норлунд и двадцатисемилетнего Нильса Генрика Давида Бора. Лютеранский пастор в этой церемонии не участвовал. Довольно было чиновника мэрии в родном городе Маргарет — маленьком Слагельсе.

Молодые не жаждали никаких церемоний.

То громадное, что произошло в их жизни, касалось только их двоих. И единственное, что им нужно было, — одиночество вдвоем.

Но прежде чем пуститься в свадебное путешествие, они не могли не отбыть традиционных повинностей. Через полвека с лишним фру Маргарет рассказывала, улыбаясь прошлому:

«…Моя мать любила свадьбы, и ей нравилось, чтобы все происходило заведенным порядком, и поэтому она хотела заранее знать дату нашего приезда и как долго мы собираемся пожить дома, и прочее разное в гаком роде. А Нильс сказал: «Разве в самом деле необходимо звать все это заранее?»

Мягкость не позволяла ему противиться деспотизму родственных обязанностей иначе как в несмело-вопросительной форме. Создавалась видимость проблемы, и появлялась возможность постудить по-своему, никого не обижая. В доме слагельсского аптекаря ему это удалось сразу,

«О свадебном обеде он сказал:

— Нам следовало бы подумать, каким поездом мы улизнем от всего этого…

Моя мать рассчитала, что обед продлится три часа. Он воскликнул:

— Как! Неужто вправду можно потратить три часа на обед?! А успеем ли мы на семичасовой паром?.,»

Легко поручиться — они успели на семичасовой паром.

…Через два дня он уже представлял юную миссис Маргарет Бор своей бывшей кембриджской хозяйке — миссис Джордж. Он намеренно привез Маргарет туда, откуда почти год назад писал ей об ивах, наполненных ветром, о своих надеждах и разочарованиях. Теперь, когда все дурное кембриджское было далеко позади, все хорошее стало видеться прекрасным. Хотелось приобщить к этому Маргарет. Их ожидало долгое общее будущее. Хотелось расширить их недолгое общее прошлое: пережить вдвоем, хотя бы пунктирно, весь минувший год их первой разлуки, чтобы она увидела то, что уже увидел он. И запланированное еще в дни их помолвки свадебное путешествие по Норвегии они заменили поездкой по Англии. Теперь она словно бы конспектировала его Англию. И то, что сделалось его внутренним достоянием в Кембридже, — прикосновение к живой и музейной громаде истории, — становилось и ее приобретением.

Но не так уж много времени выпадало им на праздношатание по городу и на визиты. Впереди был Манчестер. Впереди был Резерфорд. Следовало явиться к нему с завершенным текстом статьи о торможении альфа-частиц, чтобы она, эта статья, побыстрей ушла с благословением Папы в редакцию Philosophical Magazine. И, к удивлению миссис Джордж, молодой датчанин, совершавший свадебное путешествие, разложил на столе как в прежние дни, научные бумаги. Но, к еще большему ее удивлению, не он уселся за стол, а молодая датчанка, его жена.

Тогда-то они впервые начали трудиться вдвоем. Но когда впоследствии Томас Кун заговорил об этом с фру Маргарет слишком прямолинейно: «Вы начали работать вместе с профессором Бором…», она с улыбкой возразила:

«Я не работала с ним, Я была только его машинисткой…»

Она преуменьшала свою роль из боязни, чтобы другие ее не преувеличили. Но она не просто записывала. Она улучшала его английский. А главное — она была для него музой покоя и сосредоточенности. Не потому ли он сумел справиться со второй половиной статьи всего за неделю!

…12 августа они уже гуляли, взявшись за руки, по центральной магистрали Манчестера. Кто-то сказал, что в те времена это была самая оживленная улица Европы. И Маргарет могла сразу оценить, в какой деятельной атмосфере жил здесь ее Нильс. А когда она увидела потом, как трясет ему руку долговязый Дарвин, как доверчиво смотрит ему в глаза тонколицый Хевеши, как внимающе вслушивается в его неловкую английскую речь сам Резерфорд она сумела оценить и атмосферу поощряющего признания, окружавшую его здесь.

А манчестерцы, в свой черед, сумели тотчас ее оценить. Рассказывали, что Резерфорд был совершенно покорен приветливой красотой, естественностью и складом ума Маргарет Бор. В духе своей порывистой непосредственности, он попросту не отходил от нее с той минуты, как молодая чета перешагнула порог его профессорского дома на Уилмслоу-роуд. Даже громоздкая галантность появилась в его манерах. И Мэри Резерфорд с той же первой минуты распространила на нее свою материнскую благожелательность к Бору. Это было вместо ревности (которой, как рифмы, ждет здесь читатель).

Так в середине августа 12-го года началась длившаяся двадцать пять лет дружба этих двух семейств, принадлежавших разным поколениям: четы новозеландцев, которым перевалило тогда за сорок, и четы датчан, которым было еще далеко до тридцати.

Словно в подражание Резерфорду, вся манчестерская лаборатория пленилась Маргарет. (Это удостоверил позднее Хевеши.)

…А потом была Шотландия — до сентября.

Две недели полной праздности среди гор и туманов.

Они знавали туманы над низинами Дании. Но никогда не видели облаков под ногами. Еще много неизведанного берегла для них земля. Земля и история.

Возвращение из Англии осенью 12-го года стало для Бора житейски памятным рубежом. Скачком возросла его взрослость. Теперь у него был личный адрес в Датском королевстве: Копенгаген, Сент-Якобсгеде, 3. Теперь у него была должность в Копенгагенском университете: ассистент профессора Кнудсена.

В семье все радовались началу его самостоятельной жизни, хотя эту радость и омрачила явная несправедливость, учиненная в университете по отношению к их Нильсу: ему не дали доцентуры. И сделали это по самой гуманной методе: у него не могло возникнуть претензий, потому что университет просто упразднил с той осени штатное место доцента.

А занимал это место в течение года Мартин Кнудсен, единственный датский физик, удостоившийся прошлой осенью приглашения на 1-й Сольвеевский конгресс. Столь высокая честь была им заслужена благодаря тонким экспериментам с веществом в сверхразреженном состоянии (1909). Был он фигурой заметно большего масштаба, чем Кристиансен, но только теперь сделался университетским профессором. Молодому Бору, в свой черед, предстояло занять освободившуюся вакансию доцента. Однако довольствоваться пришлось более скромной ролью.

Он не был бы особенно удручен случившимся, когда бы обязанности ассистента оставляли ему больше времени для собственных уединенных занятий. Но ассистентское время безжалостно перемалывалось в лаборатории:

«…целыми днями я возился с экспериментами но изучению трения в газах…»

Время уходило не на то, чем знобило тогда его мысль.

…Вообще-то его привлекало в физике все. Равно: скромные опыты и нескромные идеи. Она была для него втайне не столько профессией, сколько «занятием ума». (Однажды, уже в старости, он назвал себя «любителем». Психологически интересно, что точно так же назвал себя в старости Макс Борн.) Физика была для него не столько академической дисциплиной, сколько философией природы. Его не сочли бы чужим в платоновском саду Акадэма и в аристотелевском Лицее: он полагал, что и малое и большое равно выражает устройство мироздания. Природа была для него едина. И физика была едина.

Недаром в один из кембриджских дней сильнее разочарований оказалось для него наслажденье от виртуозной лекции Дж. Дж. о полете гольф-мяча. Точно оправдываясь, он тогда просил Харальда понять его: «Ты ведь знаешь, я немножко одержим такими вещами». А в Манчестере был день, когда он захватил воображение Резерфорда неожиданным рассказом о маленьком опыте копенгагенского профессора Притца: свеча в фонаре — фонарь на нитке — перерезается нитка — падает фонарь — гаснет свеча… Отчего она гаснет? Такая пылкая увлеченность была в его рассказе, что Резерфорд, бросив все дела, пустился проверять наблюдение Притца…

И уж конечно, молодой Бор сполна отдался бы ассистентским занятиям у Мартина Кнудсена, если бы с отъездом из Манчестера кончился и приступ его манчестерской сосредоточенности. Но приступ продолжался. И очень скоро в его лабораторном рабочем дне самой желанной сделалась минута, когда этот день оставался позади.

Он покидал лабораторию поспешно — легким шагом, И видно было со стороны; этого человека куда-то влечет главное притяжение дня. Оно впереди. Старые улочки университетского квартала послушно выносили его на многолюдный простор магистралей, где ветры с Эрезунда становились в ранних сумерках все свежее день ото дня; осень вползала в зиму. После годовой отлучки ему нравилось шагать по Копенгагену. Путь до Маргарет и до письменного стола отнимал двадцать-тридцать минут — это зависело от выбора маршрута. Иногда он шел по длинной Бредгеде, обставленной солидными зданиями. Мимо Хирургической академии, мимо лаборатории покойного отца, где незримо дежурила и неслышно окликала его недавняя юность. А иногда шел он по мечтательно широкой Блегдамсвей, обсаженной высокими деревьями. Мимо кирпичной кирки, мимо облетающих рощ и безлюдных полян Феллед-парка, где незримо дежурило и, может быть, уже окликало его близкое будущее: там предстояло вырасти его знаменитому институту.

Но какой бы маршрут до Сент-Якобсгеде ни выбирал он, любые голоса из прошлого и грядущего терялись в переполнявшей его музыке настоящего. Никому не слышной, кроме Маргарет.

После репетиции в Кембридже она все уверенней усаживалась за письменный стол писать под его медлительную диктовку, И ту неслышную посторонним музыку услышал с годами Эйнштейн. «Это высшая музыкальность в области теоретической мысли» — так сказал он о том, что Бор вышагивал, а Маргарет записывала тогда.

…Наступало утро, и он снова отправлялся в сторону серой громады Фруе Кирке. И утренний шаг его бывал только поспешным, а не легким. В университете ждало его, кроме лаборатории, еще одно отвлечение от главного притяжения дня.

Ему не досталась должность доцента. Однако он не лишен был прав доцента с ныне забытой приставкой приват. Он мог прочитать курс лекций на избранную тему как лектор вне штата. Это сулило добавку к ассистентскому жалованью. И отвечало его потребности, пока еще не осознанной, убеждать и учительствовать.

Он выбрал непродолжительный курс. И, как всегда, остался верен себе: нашел углубленную тему и совсем нестандартную — «Механические основания термодинамики». Во всем его тянуло к прояснению основ. И, кажется, тот короткий курс ему удался. Но взяться за новый он не пожелал. Он ревновал к уходящему времени. В нем все звучало: «А успеем ли мы на семичасовой паром?»

Из-за того ли, что стояла осень, превращавшаяся в предзимье, время уходило с немилосердной наглядностью. Просто видно было, как оно уходило: обрамленные утренней и вечерней зарей, дни таяли, как свеча в присловье, — с двух концов. И с такою же наглядностью таял год — тысяча девятьсот двенадцатый. И в преддверии рождественских каникул он подошел в лаборатории к Мартину Кнудсену и с той же тихой непреклонностью, как Томсону в Кембридже, сказал:

— Пожалуй, лучше бы мне оставить это…

Маленький Кнудсен — просторный лоб, холеные усы, энергическая повадка — выслушал ассистента, поневоле глядя снизу вверх: ассистент был на голову выше. Выслушал с облегчением.

Бор сказал о нем однажды: «В Кнудсене было нечто замечательное». Сознавал ли и Кнудсен, какого помощника послал ему случай? Возможно. Но иметь помощником того, кто на голову выше, обременительно. И хорошо лишь при одном условии — если этот помощник не одержим собственными замыслами. А Кнудсен чувствовал с первого дня: его ассистент, присутствуя, в действительности отсутствует. И он сразу согласился предоставить Бора самому себе… Бор рассказал историкам:

«Я уехал вместе с моей женою за город, и там мы писали очень длинную статью…»

…На деревенском столе лежали семь полос манчестерской Памятной записки. И были они как переплетающиеся корни живого дерева. Оно росло. Про того, кому удается вырастить нечто живое там, где другим это не удается, в Кембридже и Манчестере говаривали: «У него зеленый палец». Бор чувствовал тогда, что у него зеленый палец. Но когда завяжутся плоды на его дереве, не знал. Сначала чудилось, это случится вот-вот… Еще задолго до бегства в загородный пансион 4 ноября он написал Резерфорду из Копенгагена: «Я добился некоторого успеха…» В черновике сохранилось уточнение: «маленького». Но, перебеляя письмо, он зачеркнул это слово. Оно противоречило оптимистическому заверению: «…надеюсь, что смогу закончить статью в течение нескольких недель». Он объяснил, на что они ему понадобятся:

«Я встретился в процессе вычислений с серьезными затруднениями, возникающими из-за неустойчивости рассматриваемых систем…»

Это были все те же системы — отрицательные электроны вокруг положительного ядра. И ему все так же думалось, что его неклассической гипотезы — той, что обездолила бы в макромире камень на веревке и танцовщицу на льду, — будет достаточно для победы над неустойчивостью резерфордовского атома. Он не догадывался, что ему не обойтись без нового озарения. А озарения не планируются. Он все думал: нужен лишь сосредоточенный труд, сжимающий время. Одиночество с Маргарет — и ничего другого.

Резерфорд повторил ему в ответном письме 11 ноября свой вопиюще антирезерфордовский совет: «Не спешите…» И даже пояснил, почему нет причин для спешки: «…мне сдается, что едва ли кто-нибудь еще работает над этой проблематикой».

Резерфорд не подозревал, как глубоко заблуждался. Рыться в текущей литературе — а текущая, она ведь и утекающая — у него не было досуга. Охоты — тоже. (В общем-то, как у всех исследователей, переобремененных собственными исканиями.) Датчанин был единственным, кто прямо на его глазах утруждал свою голову размышлениями о судьбе планетарного атома. Никто другой в поле зрения не попадался. А значит, вернее всего, и не существовал… Это был как бы экспериментальный подход к бегущей истории знания. Простейший подход, но для прогнозов едва ли пригодный.

И у Бора недоставало досуга на текущую и утекающую периодику. Он не знал тогда даже о первой попытке А. Хааза обручить томсоновский атом с квантовой теорией. И о такой же попытке А. Шидлоффа не знал. Для этого нужно было полистать немецкий журнал по радиоактивности за 1910 год и Annalen за 1911-й. И уж вовсе не могли дотянуться его руки до журнала нефизического — «Ежемесячных записок» Королевского астрономического общества Великобритании. А там на протяжении целого года печаталась серия статей, прямо относящихся к делу. Астрофизик из кембриджского Тринити-колледжа Дж. В. Никольсон одним из первых на Земле пытался услышать, что говорят о внутреннем устройстве атомов звезды и туманности. И для того чтобы понять услышанное, он пробовал обручить планковские кванты уже не с томсоновской моделью (безнадежно устаревшей), но с планетарной (классически не озможной)! Точнее, с похожим на Сатурн атомом Нагаоки.

Голос молодого астрофизика прозвучал на протяжении года четырежды. Однако ни в Англии, ни на континенте он не возбудил достойного эха. Всего же примечательней, что первая статья тридцатилетнего Никольсона появилась как раз в дни 1-го конгресса Сольвея, когда стареющий Гендрик Антон Лоренц, думая о таинстве рождения квантов, говорил:

«…Вполне вероятно, что, пока происходит коллегиальное обсуждение поставленной проблемы, какой-нибудь мыслитель в уединенном уголке мира уже дошел до ее решения».

Правда, Кембридж не был уединенным уголком, а Никольсон до решения не дошел. Тем не менее слова Лоренца были вещими. В них выразился не экспериментальный, а интуитивный подход к бегущей истории. Как оказалось, более точный. Стареющий ветеран чувствовал: кто-то уже в пути. И дойдет, если будет мыслителем!

Вторая статья безвестного Никольсона появилась через месяц — в декабре 11-го года, когда столь же безвестный датчанин шагал по тому же зимнему Кембриджу, обдумывая будущий переезд в Манчестер. Третья появилась в июне 12-го года, когда идеи боровской Памятной записки уже просились на бумагу. Четвертая — в августе, когда Резерфорд, пока еще устно, советовал Бору на прощанье: «Не спешите…»

А Бор, ничего не зная о Никольсоне, спешил. Точно был он в Брюсселе, слышал голландца и поверил в его прогноз. И даже уехал, словно бы нарочно, в уединенный уголок. Оставалось оказаться мыслителем.

…Когда в ноябре 1962 года к нему пришли историки, Бор уже не мог вспомнить, как полвека назад он впервые узнал о работах кембриджского астрофизика. И о самом Никольсене не рассказал ничего. Они ни разу не писали друг другу: в архивах обоих нет указаний на это. Случай, по-видимому, ни разу не сводил их и в личном общении, хотя Никольсон тоже прожил долгую жизнь. (К слову сказать, была она не слишком счастливой; он умер в 1955 году в Оксфорде, проведя последние двадцать пять лет в отставке по болезни. И наверняка он всегда сознавал, что останется в памяти потомков не своими работами, а только ссылками на них в Трилогии боровских статей 13-го года.)

То, чего не сохранила память Бора, могла сохранить его переписка. Однако в ту осень и зиму ему незачем было писать дневниковые письма, как он это делал в Манчестере. С Маргарет он не разлучался, а Харальд и мать жили неподалеку. И вот оттого, что ему было тогда хорошо, через пятьдесят лет стало плохо историкам.

В беседах с фру Маргарет Томас Кун и Леон Розенфельд попробовали неделя за неделей восстановить ход работы Бора над его Трилогией. И все шло на лад, пока они реставрировала манчестерское лето 12-го года.

Томас Кун: Не говорил ли он чего-нибудь, что намекало бы на природу его тогдашних затруднений?

Фру Вор: Хорошо, я попытаюсь найти… Вот более чем год спустя он пишет мне в Лунд…

Томас Кун: Эго ужасающий прыжок от июля 12-го года к сентябрю 13-го!

Фру Бор (улыбаясь своим прекрасным воспоминаниям): Да, но вы понимаете, — нет писем…

Сколько огорчения было в этом восклицании историка — «ужасающий прыжок»! И все-таки один желанный послеманчестерский документик с точно обозначенной датой — 23 декабря 12-го года — нашелся. Не в архиве фру Бор, а в связке сохранившейся переписки Нильса и Харальда. Это была всего лишь открытка к рождеству, посланная Нильсом из сельского пансиона, куда он уехал с Маргарет. В той открытке возникло наконец имя Ни-кольсона. Мельчайшим почерком, чтобы хватило Места, Бор приписал в постскриптуме:

«P. S. Хотя это не очень-то подходит для рождественской открытки, один из нас хотел бы заметить, что, как ему думается, теория Никольсона не несовместима с его собственной…»

Эта замысловатая фраза с привкусом шутливости кое-что прояснила. Стало очевидно, что со статьями англичанина он познакомился совсем незадолго до отъезда в деревню. И тогда же обсуждал их с братом: он ведь пишет о них как о чем-то уже известном им обоим. Но критически разобрался в них уже за городом. Легко допустить, что именно знакомство с этими работами ускорило само решение Бора бросить лабораторные занятия. Ведь тогда, в середине декабря, вдруг воочию открылось то, что он не один в пути! И это сознание, что он, спешащий, все-таки слишком медлит, с тех пор уже не оставляло его до финиша. Через несколько недель он написал одному шведскому другу-физику:

«Проблема крайне злободневна; боюсь, я должен поторапливаться, если хочу, чтобы мри результаты оказались новыми, когда я к ним приду…»

Однако несравненно драматичней было иное беспокойство, охватившее его тогда.

Едва заглянув в статьи англичанина, он сразу увидел: Никольсону пришлось покуситься на классическую механику в том же пункте, что и ему, Бору.

Никольсон тоже вынужден был ограничить свободу вращений электронных колец вокруг атомных ядер. Да, электроны и у него объединялись в кольца: он тоже на новый лад развил эту схему, придуманную еще Дж. Дж. для атома-кекса. И Никольсон тоже довел бы до отчаяния микротанцовщицу на льду, заставив ее почему-то вертеться с одним и тем же числом оборотов… В общем, у Никольсона тоже вопреки классике для каждого кольца была своя частота — своя орбита. И еще прозрачней, чем в Памятной записке Бора, проявлялась связь такой конструкции с квантами Планка: величина, определяющая вращение, изменялась в атоме только на целый квант действия пунктирно (h либо 2h, 3h, 4h…). С простой закономерностью возникала в атоме прерывистая череда электронных колец.

Позднее — по следу Бора — физики начали для краткости говорить о квантовании вращений. Так уже до этого — по следу Планка — они говорили о квантовании энергии. Так еще древние греки, поверив в дробимость материи на неделимые атомы, вправе были бы — по следу Демокрита говорить о квантовании вещества. Все это был, в сущности, единый круг идей об устройстве природы. Бору вскоре предстояло замкнуть его, с тем чтобы еще через десять лет стать во главе тех, кто вышел из этого круга на простор иных, на сей раз и впрямь совершенно небывалых представлений о мире. И начать новый круг…

Читая англичанина, Бор мог яснее осмыслить собственную манчестерскую гипотезу. Главное у них обоих, казалось бы, совпадало. В тот декабрьский день, когда он обнаружил это, ему бы испытать воодушевление: ведь если два человека независимо друг от друга приходят к одной и той же гипотезе, разве не возрастают шансы на ее истинность? Но он испытывал тревогу, смятенность, разочарование. Леон Розенфельд, вероятно, очень точно сказал: «Он был повергнут в замешательство».

Отчего же? Неужто тоска по приоритету, такая распространенная в науке, сжала и его сердце? Да ведь всего только в минувшем апреле он так легко, как этого никогда не делают честолюбцы, послушался Резерфорда и не стал публиковать свои соображения о законе Атомного номера и прочие догадки, возникшие «под знаком Хевеши».

Неужели он изменился с весны?!

…Он пришел в замешательство не от сходства его результатов с никольсоновскими, а от прямо противоположной напасти: при совпадении гипотез выводы из них были в вопиющем разладе!

Планетарный атом у англичанина вовсе не обретал устойчивости. Электронные кольца вместе с атомными ядрами создавали в звездах только мимолетные конструкции. Из таких атомов нельзя было бы построить прочный земной мир. А у него, у Бора, той же самой гипотезе предлагалось объяснить устойчивость мира — надежное постоянство атомных размеров… Было от чего прийти в замешательство.

После возвращения в Копенгаген, когда он уже разобрался в этом драматическом противоречии, ему захотелось рассказать Резерфорду о том, что пережила его мысль. Он уверен был, что в Манчестере о работах Никольсона ничего не знали. И потому в начальных строках своего письма объяснил, что речь пойдет о «недавних статьях по поводу спектров звездных туманностей и солнечной короны». А уж потом последовал исповедальный абзац:

«Со всей очевидностью теория Никольсона дает результаты, которые находятся в поражающем противоречии с теми, какие получил я. И поэтому мне сперва подумалось, что либо одна теория, либо другая по необходимости целиком ошибочна».

И вслед за тем с облегчением: «Теперь, однако, я пришел к нижеследующей точке зрения…» Разгадка выглядела совсем просто: он и Никольсон рассматривали атом на разных стадиях существования.

…Перед глазами Никольсона были спектры звезд — наборы электромагнитных сигналов, приходящих из первозданного хаоса материи. Наборы маленьких сигналов бедствия: их подавали электроны, теряя свободу под притяжением какого-нибудь встречного атомного ядра. Они начинали вращаться вокруг него по одной из разрешенных гипотезой — квантованных — орбит. Такое созидание атома не давалось даром: рождаясь, он испускал излучение — световые кванты. Какие? Какого цвета? Или — на точном языке физики — электромагнитные колебания какой частоты содержались в этих квантах? Никольсон отвечал на классический лад: с какой частотой вращалось электронное кольцо, такой частоты колебания и отчаливали от атома. Каждому возникшему кольцу отвечала своя цветная линия в спектре. В звездном высокотемпературном хаосе беспрестанных столкновений атомы рождались и погибали вновь и вновь. Проблема их устойчивости Никольсона не беспокоила.

…Перед глазами Бора была земная природа — преодоленный хаос материи. Атомы не только жили, но заключали друг с другом благополучные союзы, создавая молекулы. И, пересказав Резерфорду теорию астрофизика из Кембриджа, Бор написал:

«…Соображения, схематически очерченные здесь, не играют никакой существенной роли в моем исследовании. Я вообще не занимаюсь проблемой вычисления частот, соответствующих линиям в видимом спектре. Я только пытаюсь на базе простой гипотезы, которой пользовался с самого начала, обсудить вопрос об устройстве атомов и молекул в их устойчивом состоянии».

Он оставался верен духу своей Памятной записки.

Письмо Резерфорду было написано 31 января 1913 года! Зачем восклицательный знак? Это разъяснится совсем скоро.

Рассеялось первоначальное замешательство: обе теории, казалось, обещали успех, каждая в своей сфере.

31 январи Бору еще и вправду думалось, что это разные тайны — излучение атомов и устойчивость атомов. С таким убеждением он и вступил в февраль.

Через полвека семидесятисемилетний Бор уверял историков, что он мог бы и не ссылаться в первой статье Трилогии 13-го года на работы Никольсона, до такой степени теория англичанина «не имела ничего общего с подлинной разработкой» проблемы устойчивости. Но историки хотели восстановить историю. И допытывались у Бора: какая же все-таки нужда заставила его полистать английский астрономический журнал? А он не мог вспомнить. И был огорчен несговорчивостью памяти, оттого что видел огорчение историков. Он попробовал построить правдоподобную версию.

…В конце 12-го года, рассказал он, на страницах этого журнала была напечатана очень важная для него статья известного спектроскописта А. Фаулера о спектре гелия. Так не в поисках ли этой статьи наткнулся он на работы Д. Никольсона?

Однако лица историков не оживились.

Бор (мягко): Я чувствую, вы не совсем удовлетворены… Томас Кун (с сожалением): Простите меня, если я излучаю ауру неудовлетворенности…

Это «излучение ауры» хоть и прозвучало туманно-выспренне, но не скрыло, что чувству удовлетворения взяться было неоткуда: для реставрации прошлого версия со статьей Фаулера явно не годилась. Статьи о спектрах тогда еще не представляли для Бора никакой важности. Он сам поэтически объяснил, в чем тут было дело. Он сказал об атомных спектрах:

«Они воспринимались так же, как прекрасные узоры на крыльях бабочек: их красотою можно было восхищаться, но никто не думал, что регулярность в их окраске способна навести на след фундаментальных биологических законов».

Вот и спектральные линии атомного излучения — не верилось, что в них может быть записан желанный ответ, a фундаментальный вопрос об устойчивости атомов, пектры выглядели запутанно, а ответу следовало быть цростым. Да к тому же он увидел, что попытка Никольсона расшифровать эти узоры на крыльях звездных бабочек вовсе не объясняла главного: почему атомные спектры состоят из отдельных линий строго определенного цвета?

Говорилось: это потому так, что электроны могут вращаться на каждой орбите только с единственной частотой. Кванты света такой именно частоты и покидают атом. Но электрон ведь должен сохранять свою энергию, чтобы оставаться на орбите. А как он может ее сохранять, если излучение света — это растрата энергии? Частота вращения начнет изменяться, едва электрон сядет на орбиту и станет излучать. И тотчас же начнет меняться частота испускаемого света. И не сможет родиться ни один настоящий квант, потому что квант — это всплеск одинаковых световых волн и в нем не могут быть намешаны разные электромагнитные волны. (Так в кроне одного дерева не может быть намешана листва различных очертаний.)

Вскоре Бору предстояло с легкостью — в первом же параграфе первой статьи, открывавшей его Трилогию, — показать несостоятельность теории Никольсона. Но это вскоре, а пока иллюзорность построения англичанина лишь усилила его недоверие к «вычислению частот»…

Вот так обстояло дело со спектральными линиями еще 31 января 13-го года. Однако, выхаживая по маленькому кабинету на Сент-Якобсгеде письмо Резерфорду, Бор в тот вечер последний раз доверял бумаге это свое недоверие. И сам не знал этого.

Ровно через неделю, 7 февраля, ему снова случилось писать программное письмо. Он отвечал Дьердю Хевеши. (Видна еще секретарская неопытность Маргарет — в машинописном тексте неровные поля и абзацы скачут.) Приятно было рассказывать манчестерскому другу о своих новых 'теоретических ожиданиях. В заключительный абзац письма вторглась вводная фраза меж двух тире, самим стилем и начертанием выдававшая взбудораженность пишущего:

« — И НАДЕЖДА, И ВЕРА В БУДУЩЕЕ (МОЖЕТ БЫТЬ, СОВСЕМ БЛИЗКОЕ) ОГРОМНОЕ И НЕПРЕДВИДЕННОЕ?? РАСШИРЕНИЕ НАШЕГО ПОНИМАНИЯ ВЕЩЕЙ —«

Слишком шумно для Бора, не правда ли? И слишком пылко даже для его оптимизма. И эти два внезапных, как бы умеряющих пыл, вопросительных знака после искусительного слова «непредвиденное»!.. Так написалось неспроста. Что-то случилось между 31 января и 7 февраля — что-то крайне существенное…

Потому-то именно на той неделе написал он шведскому другу-физику памятные слова: «Боюсь, я должен поторапливаться…» Тревоги из-за Никольсона были уже пройденным этапом для его мысли, и прямой подоплекой этого «боюсь» могло быть лишь нечто открывшееся в последние дни. Впечатление такое, точно он внезапно увидел кратчайший путь к решению всей проблемы устойчивости. И больше того — этот путь так ясно прочертился во тьме, что показалось: он виден каждому! В любое мгновенье из-за поворота истории могла появиться фигура еще мокрого Архимеда, бегущего на привязи неумолчного крика познания: «Эврика, эврика!» Надо было, надо было поторапливаться…

Теперь можно сузить временные рамки случившегося до одного-двух дней. Письмо шведскому другу, второе из трех писем той недели — между 31 января и 7 февраля, — вводит в игру промежуточную дату — 5 февраля.

В Швецию он писал Карлу Усену, молодому профессору физики Уппсальского университета. Их дружба началась поздним летом 11-го года. В Копенгагене происходил конгресс скандинавских математиков, где Усен и Харальд Бор выступали с докладами. Нильс их слушал. Усен был ненамного старше братьев — сразу перешли на «ты». А потом на имя Нильса пришло письмо из Уппсалы:

«…Знакомство с вами обоими было одним из самых больших моих приобретений за время конгресса. Думаю, что оно будет иметь важное значение для всей моей жизни. Я многое узнал от тебя и еще многое узнаю. Я буду всегда следить за твоими успехами с неостывающим интересом…»

Минувшие полтора года убедили Бора, что это правда. Он посылал Усену свою диссертацию, и тот встретил ее с живым пониманием. Они переписывались. А ныне, в первых числах февраля 13-го года, какие-то дела привели Бора на день-два в Уппсалу. И он подробнейше рассказывал другу о теперешних своих исканиях. И был так словоохотлив, что потом шутливо просил прощения за это: «Надеюсь, что я не слишком утомил тебя моей болтовней». Он успел рассказать все, что имел в запасе. Меж тем достоверно известно — из позднейшего письма Карла Усена, что никаких новостей, сверх программы его Памятной записки, у Бора в Уппсале еще не было.

Значит, нечто крайне существенное, что случилось на той неделе, произошло ПОСЛЕ его возвращения из короткой поездки в Швецию. Но ДО 5 февраля, когда он написал Усену: «Боюсь, я должен поторапливаться». От Уппсалы до Копенгагена день езды. Если 1 и 2 февраля Бор провел там, то раньше 3-го он вернуться не мог. Так сужаются рамки поворотного события: очевидно, оно имело место между 3 и 5 февраля 1913 года.

Однако что же в конце концов произошло?

Да словно бы ничего особенного. Маленькое событие. Но оно привело к непредвиденному рождению, казалось бы, совершенно абсурдной физической теории с неисчислимыми последствиями. И какими! Одно из них ознаменовало со временем конец КЛАССИЧЕСКОГО ПОНИМАНИЯ ПРИЧИННОСТИ. Другое — начало АТОМНОЙ ЭРЫ.

Между 3 и 5 февраля 1913 года в историю физики на минуту заглянул товарищ Бора по студенческим занятиям — Ханс Мариус Хансен. Он был на год моложе Бора. Близкая дружба их не связывала. Однокашники — не более того. Даже среди толпы, запрудившей коридор у дверей аудитории No 3, когда в мае 11-го года Бор защищал диссертацию, Хансена не было видно: месяцем раньше он уехал в Германию — стажироваться у спектроскописта Фохта. Около полутора лет, проведенных в Геттингене, сделали его знатоком спектроскопии. Он появился в Копенгагене вновь почти одновременно с Бором — поздним летом прошедшего года. И оказался в той же роли, что Бор: он стал ассистентом, но не в университете, а в лаборатории Политехнического института. И потому их встреча была, по-видимому, чистой случайностью.

Те февральские дни еще раз одарили Бора чужой отзывчивостью. Щедрая выпала неделя: к новозеландцу, шведу и венгру присоединился наконец датчанин — земляк, работающий рядом. Бор говорил, что Хансен оказался тогда в Копенгагене «единственным физиком, которому интересны были эти вещи». И снова Бор пересказывал эти вещи — снова разворачивал свою программу; объяснение «свойств материи, зависящих от системы электронов в атоме». И сердце его нового слушателя — спектроскописта — дрогнуло от надежды…

— А спектры? — вдруг спросил Хансен. — Как твоя теория объясняет спектральные формулы?

— Спектральные формулы?!

Бор навсегда запомнил и вопрос Хансена, и свое тогдашнее недоумение. В беседе с историками он повторил признание, полувеком раньше поразившее его университетского товарища:

«…я ничего не знал ни о каких спектральных формулах».

Так дети говорят — «а у нас этого не проходили…».

Тут место для долгой паузы: примирение с неправдоподобным требует времени. Но все-таки паузу надо заполнить. Есть чем.

…Всего непостижимей, что это признание Бора было для него заурядным! Таким, то есть самим собою, он пребывал всегда. Оглядываясь назад, довольно вспомнить, как в ноябре 11-го года, в минуту решающей встречи с Резерфордом, он еще ничего не знал о планетарном атоме. Заглядывая вперед, довольно прислушаться к рассказу одного из последних его ассистентов — молодого голландского физика Абрахама Пайса.

Дело было в 46-м году в Копенгагене. Пайс занимался вопросами теории поля. Бор предложил ему поработать летом вместе — «если Вас это соблазняет…».

Не нужно описывать чувства, с какими на следующее утро шел начинающий теоретик к Бору. Но первое, что он услышал, вызвало у юноши улыбку недоверия:

«…Бор сразу сказал мне, что работа с ним будет плодотворной, только если я пойму, что он в этих делах дилетант. Он объяснил, что так уж у него бывало всегда с новыми проблемами — ему приходилось начинать с полного незнания предмета… Я вспомнил его слова через несколько лет, когда сидел рядом с ним на коллоквиуме в Принстоне. Темой обсуждения были ядерные изомеры. (В их числе и открытые И. В. Курчатовым. — Д. Д.) Слушая докладчика, Бор становился все беспокойней и нашептывал мне, что тут произносятся вслух совершенно ошибочные вещи. Наконец он не мог больше сдерживаться и захотел выступить с возражениями. Но, едва приподнявшись, снова опустился на место, посмотрел на меня с потерянным видом и спросил: «А что такое изомеры?»

Троеточие в середине рассказа Пайса заменило опущенную фразу — она хороша как заключение:

«Может быть, лучше всего сказать, что сила Бора гнездилась в его поражающей интуиции и проникновенности мысли, а вовсе не в эрудированности».

Тут, как и во всем, сказывалась его натура: не рвавшийся быть впереди «по всем предметам», он не умел лелеять знания впрок. У его силы была своя уязвимость.

…За тридцать три года до Пайса вежливая улыбка недоверия поместилась на лице Хансена. Но, как и Пайс, Хансен увидел, что Бор не шутит: ему и вправду были незнакомы давно известные спектральные формулы Бальмера (1885), Ридберга (1890), Ритца (1908). И Хансену не оставалось ничего другого, кроме как с жаром (или снисходительностью?) сказать ему:

— Тебе необходимо посмотреть эти формулы. Ты увидишь, с какой замечательной простотой они описывают спектры!

— Я посмотрю…

В таком ключе Бор впоследствии рассказывал Леону Розенфельду, чем завершился его первый разговор с Хансеном. Но могло ли тому прийти в голову, что столь мало сведущий в спектроскопии Нильс Бор вскоре будет приглашен оппонентом на защиту его, хансеновской, спектроскопической диссертации, как единственный знаток сути дела — физик, впервые понявший происхождение атомных спектров!

Они попрощались до новой встречи.

«Я посмотрю…»

Дальше была дорога домой. Снежные сумерки. Письменный стол. Зажженная лампа. Ничего сверхобычного. Но зимние волны Эрезунда уже выбросили на сушу запечатанную бутылку с посланием.

Он раскрыл немецкую книгу «Принципы атомной динамики» Штарка (и в ту же минуту ей суждено было навсегда устареть). Легко отыскал нужную страницу. И увидел формулу Бальмера. Как все формулы в научных сочинениях, она походила на паром, переправляющий мысль по чистой глади пробела с северного берега текста на южный. Зрелище было обыкновенным.

Но именно обыкновенностью своей оно, это зрелище, поразило Бора: формула могла сойти за неприхотливый примерчик по школьной алгебре. Из одной величины — ПЕРЕМЕННОЙ — вычиталась другая величина — ПОСТОЯННАЯ. И только! А это позволяло последовательно — шаг за шагом — узнавать все частоты электромагнитных колебаний в световых сигналах водорода.

ПОСТОЯННАЯ величина оставалась неизменной для всех спектральных линий, а ПЕРЕМЕННАЯ менялась от линии к линии действительно шажками: следовало лишь вместо неизвестного «х» подставлять по очереди ЦЕЛЫЕ числа…

Хансен был прав: водородный спектр описывался с замечательной простотой. Стоило в формулу Бальмера поставить число 3, и получалась частота световых колебаний для красной линии. А число 4 давало зеленую линию. Число 5 соответствовало синей. Число 6 — фиолетовой. Ну а для других целых чисел линии уходили в ультрафиолетовый конец спектра, простым глазом уже не видимый. Эта закономерная череда спектральных линий так и называлась «бальмеровской серией».

Школьному учителю швейцарцу Иоганну Якобу Бальмеру было шестьдесят лет, когда в 1885 году он опубликовал свою формулу — плод великого долготерпения. Он сумел ее вывести, «играя в числа». Это иронически называлось «цифрологией». Он не знал об устройстве атома ничего и располагал лишь короткой табличкой тогдашних данных о длинах световых волн в спектре водорода. Могущество арифметики и чутья природы…

Увидев эту формулу, Бор уже не мог от нее оторваться. В минутном прозрении осозналось: вот оно — то, чего ему остро недоставало для понимания атома! Долгожданный паром. Сейчас он отчалит. Впереди откроется берег… Это была одна из поворотных минут в истории естествознания.

Если психологам творчества нужен наглядный пример научного откровения, лучшего не найти. Слово «откровение» было произнесено Бором в беседе с историками — так он сам почувствовал происшедшее. А Леон Розенфельд засвидетельствовал:

«Он говорил мне не раз: «Как только я увидел формулу Бальмера, все немедленно прояснилось передо мной».

Это и было событием, случившимся между 3 и 5 февраля. Это заставило его 5-го вечером продиктовать Маргарет шумную фразу о ВЕРЕ В БУДУЩЕЕ…

Работа не начинается с откровения. Оно само итог работы. Не милость случая, а награда за труд. Второе дыхание появляется, когда вся мускулатура мысли болит.

Прошло десять месяцев с того момента, как мысль с КВАНТОВОЙ конституции планетарного атома посетила Бора и зажила в нем. И когда он увидел простенькую формулу Бальмера, за ее незнакомыми очертаниями тотчас проступили перед ним давно знакомые очертания еще более простенькой формулы Планка для квантов энергии. Это было как наплыв на киноэкране, когда сквозь одно лицо вдруг проступает другое.

В ту минуту рука еще не потянулась к перу — за ненадобностью: вычислять на бумаге было еще нечего. Коротенькие перестройки несложных формул мелькали в уме, а воображение уходило все глубже в структуру атома. И странно подумать — туда заманивали мысль всего лишь две ничем не примечательные черты в бальмеровской формуле, те, что сразу поразили Бора: знак вычитания и череда целых чисел… Тысячи глаз на протяжении десятилетий видели этот знак минус и эти целые числа, а никто ничего не сумел увидеть за ними!

Что же увидел Бор?

…Серия световых сигналов атома водорода — это серия порций света. У каждой свой цвет, своя частота. И каждая рождается как разность двух величин — большей и меньшей. И ясно, что это за величины: первая — энергия атома ДО испускания кванта, вторая — ПОСЛЕ. (Любая порция чего угодно описывается такой арифметикой: от того, что БЫЛО, отнимается то, что ОСТАЛОСЬ, а разность — то, что УШЛО. Разность — квант.)

Но приковали к себе удивленное внимание особенности обеих величин. Тут-то начиналась неведомая прежде физика.

Первая — энергия ДО излучения, — хоть и была переменной, разной для разных квантов, однако не могла быть любой. Оттого, что зависела она от смены целых чисел, ей приходилось меняться не плавно, а ПРЕРЫВИСТО. И эта прерывистость говорила: в атоме есть череда — пунктирная последовательность — уровней энергии. Каждый квант, улетая, берет старт со своего уровня. Красный — с одного, зеленый — с другого, синий — с третьего, фиолетовый — с четвертого. Так для бегунов, бегущих по разным дорожкам, старты выстраивают ступенчато. И нельзя срываться в бег с любого места, а только с разрешенной отметки…

Вторая величина — энергия атома ПОСЛЕ излучения, — напротив, неспроста оставалась одной и той же, какой бы квант ни покинул атом, красный или зеленый, синий или фиолетовый. Ее постоянство говорило: в атоме есть самый низкий уровень энергии, ниже которого она опуститься не может. Так для всех бегунов линия финиша одна.

Но гораздо точнее отражал эту картину образ лестницы с нижней площадкой и поднимающимися вверх ступенями. Бор увидел лестницу РАЗРЕШЕННЫХ ПРИРОДОЙ УРОВНЕЙ ЭНЕРГИИ В АТОМЕ.

Двигаться до такой лестнице можно было лишь со ступеньки на ступеньку — вскачь. Задержаться меж ступенек природа не позволяла. И становилось ясно, почему излучение выбрасывается из атома порциями, а не с постепенной непрерывностью.

В формуле — череда целых чисел…

В атоме — череда уровней энергии…

На каждом из них атом может пребывать в устойчивости до испускания кванта. А в момент испускания энергия падает сразу до нижнего уровня неостановимым скачком.

Однако воображению, вечно жаждущему зримой наглядности, захотелось большего. Захотелось представить, как это все физически происходит. По крайней мере, в простейшем водородном атоме, где только один электрон вращается вокруг ядра. Как. строится там эта энергетическая лестница?

Кроме электрона, некому быть ее строителем. И кроме его планетных орбит, нечему служить ее ступеньками. Лестница разрешенных уровней энергии увиделась как паутина дозволенных электронных орбит. Чем дальше от ядра пролегает орбита — тем выше энергия атома. Чем ближе к ядру, тем ниже энергетическая ступенька.

В формуле — череда целых чисел…

В атоме — череда орбит электрона…

На каждой из них до момента испускания кванта электрон, вопреки классике, ничего не излучает. А в момент испускания он сваливается вниз, и его подхватывает другая — более близкая к ядру — орбита. И он начинает теперь вращаться на ней — снова не излучая. А квант покидает атом в процессе самого перескока электрона. И только от глубины падения с орбиты на орбиту зависит величина улетающего кванта — его частота. Или цвет спектральной линии…

На экране продолжалась смена наплывов. И без всяких выкладок на бумаге продолжалось прояснение открывшейся картины. И настало мгновенье, когда потребовал ответа неизбежный вопрос: какое же отношение к частоте излучаемого света имеет частота вращения электрона вокруг ядра? И ответ был единственный: никакого! Ведь там, на своих устойчивых — стационарных — орбитах, электрон не испускает электромагнитных волн. И, стало быть, как часто он облетает ядро, для излучения атома несущественно. Исчезал коренной порок всех классических попыток понять происходящее.

Это был, казалось бы, немыслимый отказ от давно утвердившегося наглядного представления: с какою периодичностью движутся заряды в излучателе, с такою частотой радиация и уходит в пространство. Так думали все — начиная от Максвелла и Герца, кончая Планком и Эйнштейном. Страшновато выглядел этот отказ, но был как вздох облегчения: процесс испускания квантов окончательно выводился из-под власти классических правил. Больше они не тяготели над ищущей мыслью.

Теперь можно было строить квантовую теорию планетарного атома, не оглядываясь с излишней доверчивостью даже на собственную Памятную записку Резерфорду.

Вспоминая впоследствии те счастливые минуты прозрения, Бор не рассказывал, как выразились его чувства. Но датского варианта эврики не возникло: он не выскочил из дому и не пустился с ошалелым криком к людной площади Трех Углов. Истинный ход его мыслей в те минуты, разумеется, невосстановим. Леон Розенфельд попытался проделать это, и, хотя он адресовался к физикам и потому не искал образной замены формулам и терминам, все равно ему пришлось признаться:

«Конечно, немного наивно (и я полностью сознаю это) представлять на такой школьно-педагогический лад грандиозный процесс созидания, происходивший тогда в голове Бора».

А что было потом, когда прошли минуты понимания проблемы в целом? Леону Розенфельду вспомнилось, как работала мысль Бора в более поздние времена:

«Что было потом, я живо могу вообразить себе: он должен был… терпеливо поворачивать формулу Бальмера в своем мозгу, как поворачивает геолог в руках найденный минерал, разглядывая его под всеми углами зрения, тщательно исследуя все детали его структуры… прощупывая логическую необходимость каждого этапа своих размышлений; он должен был в мгновенном охвате взвесить следствия из этой формулы, а затем ежеминутно подвергать их проверке данными опыта…»

…Бор мог рассказать, как однажды в детстве он, одиннадцатилетний, вместе со всем классом рисовал карандашом пейзаж за окнами Гаммельхолмской школы. Там видны были сверху три дерева, за ними — штакетник забора, а в глубине — дом. Все на рисунке выходило очень похоже, но… он выбежал из класса и вбежал в пейзаж. Сверху увидели: он пересчитывал планки штакетника. Потом все говорили — вот какой он добросовестный человек: ему захотелось, чтобы количество планок на рисунке точно сошлось с натурой. Непонятливые взрослые! Ну разве не сообразил бы он, что для этого бегать вниз не имело смысла? Там ведь кроны деревьев в трех местах широко заслоняли штакетник. И, вбежав в пейзаж, попросту уже нельзя было бы узнать, какие планки изображать не следует, потому что из окна они не видны. Его поняли опрометчиво и похвалили не за то. Ему, мальчику, захотелось тогда совсем другого: выведать скрытое от глаз «а сколько жердочек во всем заборе?». Не для рисунка это нужно было ему, а для себя, рисующего. Для полноты понимания… Но это трудно объяснить другим.

Теперь, двадцативосьмилетний, он оставался таким же.

Вчера еще ему в новинку была формула серии Бальмера, а сегодня он уже не мог не пересчитывать все жердочки в штакетниках других спектральных серий. Он должен был вбежать в спектроскопию. И он принялся «терпеливо поворачивать в своем мозгу» другие спектральные формулы — Ридберга, Рунге, Ритца… Другие спектральные серии — Пиккеринга, Пагаена, Фаулера… (Вот когда ему впервые действительно понадобилось отыскивать в журнале английского Астрономического общества статью о спектре гелия!)

И всюду он наблюдал воплощение своей спасительной идеи: у атомов есть только прерывистая последовательность устойчивых состояний — стационарных уровней энергии! Всюду ему открывалась невидимая паутина разрешенных природой электронных орбит. И всюду он видел в действии два принципа, угаданных им в первую минуту:

— на орбитах электроны не излучают;

— кванты испускаются, когда электроны перескакивают с орбиты на орбиту и атомы скачком переходят из одного стационарного состояния в другое.

Ему надо было убедиться, что эти постулаты всегда работают безотказно. И он взволнованно пережил подтверждение своей правоты, когда встретил последнюю по времени — самую обобщенную — спектральную формулу Вальтера Ритца.

…Тридцатилетний геттингенец опубликовал ее пять лет назад. Она стала известна под именем комбинационного принципа в спектроскопии. Ритц не разглядел прозрачного смысла этого принципа, как Бальмер не понял своего детища. И тут не было их вины. Старый Бальмер умер в 1898-м — за два года до появления идеи квантов. Молодой Ритц безвременно ушел из жизни в 1909-м — за два года до появления планетарной модели. А этой идее и этой модели нужно было не только появиться на свет, но еще и встретиться в одной голове.

Комбинационный принцип описывал чередование линий в любых спектральных сериях. И все линии получались из комбинации двух величин, связанных знаком вычитания. Но уже не одна, а обе они были переменными и обе зависели от смены целых чисел. Это показывало, что кванты рождались при перескоке электронов с любой орбиты на любую нижнюю — не обязательно самую нижнюю. Электрон не обязан был падать на всю допустимую глубину: он мог остановиться на любой разрешенной ступеньке… Это значило, что природа милостива и щедра на возможности. Каждому скачку соответствовал свой излучаемый квант.

В исчерпывающей схеме объяснялось все цветовое богатство спектров. И, в сущности, вся многоцветность мира.

…Теперь уже не случай, а порыв снова свел Бора с Хансеном. Тот едва ли ожидал, что Бор вдруг явится к нему в лабораторию всего через два-три дня после их первого свидания. И уж превыше всякого вероятия было, что они при этом поменяются местами и он, спектроскопист, услышит от теоретика:

— Посмотри, как замечательно просто раскрываются спектральные формулы!

Бор (историкам): …Итак, я увидел путь рождения спектров. Тогда я отправился к Хансену и сказал: «Посмотри, разве дело обстоит не так?» А он сказал, что не знает, так ли это. Но я сказал: «С моей точки зрения комбинационный принцип только в том и состоит, что ты получаешь все спектральные линии как результат вычитания одной величины из другой». А он сказал, что вовсе не уверен в этом. И потому я должен был прийти к нему снова…

Какая это была удача, что в Копенгагене тогда оказался Хансен! Бору уже и в молодости крайне нужно было, вышагивая, вслух обговаривать пониманье вещей. Кроме пространства, нужен был достойный партнер. Критик. Знаток. Скептик. Всего лучше — един в трех лицах. И притом — сочувственная душа. В Манчестере 12-го года судьба послала ему на несколько недель радиохимика Хевеши, в Копенгагене 13-го года — на несколько встреч — спектроскописта Хансена.

Почему он не написал тогда сразу письма Резерфорду? Ему бы следовало раскаяться в признании, сделанном каких-нибудь десять дней назад, 31 января: «Я вообще не занимаюсь проблемой вычисления частот, соответствующих линиям в видимом спектре». Право, следовало безотлагательно сообщить Папе, что теперь-то уж планетарный атом наверняка спасен!

Было видно: устойчивость достигалась сама собой. Обнаруживая воочию существование прерывистой череды стационарных состояний атома, спектры показывали, что есть среди этих состояний одно особое: состояние с НАИМЕНЬШЕЙ энергией. Оно — как первый этаж в современном небоскребе на бетонных сваях, придуманных Ле Корбюзье: все этажи похожи, но первый есть первый, ниже — земля. Среди орбит электрона есть первая. Ниже — ядро. И, к великому недоумению классической физики, ниже электрону уже нельзя поселиться. Так между О и 1 уже не поместить никакого целого числа. С этой нижней орбиты электрону некуда падать. И потому он может вращаться на ней БЕССРОЧНО.

Это и было то состояние атома, какое Бор искал с самого начала: естественное или ОСНОВНОЕ! Радиус первой электронной орбиты и задавал нормальный размер атома.

…Узоры на крыльях бабочек все-таки навели на след фундаментальных закономерностей природы. В подоплеке несомненной устойчивости окружающего мира проявились квантовые черты с их непонятной пунктирностью. Словно азбукой Морзе — точками и тире — сообщали о себе глубины материи.

К уже привычной дробности вещества (Левкипп и Демократ) и к еще непривычной зернистости излучения (Планк и Эйнштейн) теперь прибавилась прерывистость в физических процессах: квантовые скачки по энергетической лестнице в атоме. У них были начало и конец, но не наблюдалось истории — никакого членения на подробности!

Может быть, потому Бор и не написал Резерфорду сразу, что тотчас почувствовал, какое ОГРОМНОЕ И НЕПРЕДВИДЕННОЕ РАСШИРЕНИЕ НАШЕГО ПОНИМАНИЯ ВЕЩЕЙ скрывалось за этой новостью? Перед столь полным разрывом с классической философией природы смутился бы и Эйнштейн. Впрочем, сослагательное «бы» можно опустить: к тому времени это уже произошло в его жизни, хотя в феврале 13-го года не было известно никому.

…Пройдет восемь месяцев, и Дьердь Хевеши в двух письмах перескажет откровенное признание Эйнштейна по этому поводу. В письме Бору: «Он рассказал мне» ЧТО МНОГО лет назад у него были очень похожие идеи, но де нашлось мужества их развить». В письме Резерфорду: «Он сказал мне, что однажды пришел к подобным идеям, но не осмелился их опубликовать».

Эйнштейн поделится этим признаньем с Хевеши в сентябре — через два месяца после опубликования первой части Трилогии Бора. И добавит («его большие глаза стали еще больше»): «…Это одно из величайших открытий».

А в феврале Бору еще нужно было самому набираться мужества и осмеливаться. Надо было пройти весь путь от руководящей идеи до количественной теории. Он ведь не натурфилософией занимался, а физикой. Как говаривал Менделеев: «Сказать все можно, а ты поди — демонстрируй…»

Демонстрировать — значило рассчитать хотя бы атом водорода: ядро плюс один электрон. Дать формулу энергетических уровней. Таблицу теоретических частот. Диаметры орбит. Размер атома в основном состоянии. И надо было убедиться, что найденные числа (числа, а не слова!) хорошо сходятся с экспериментальными данными.

Раз электрон на орбитах не излучает, он и впрямь подобен планете. Бор допустил: на орбитах еще верна обычная механика. Но раз излучение происходит порциями, в переходах между орбитами действительна квантовая теория.

В дело шли старые законы Кеплера и новый закон Планка. Маргарет села за машинку. Работа продолжалась три недели.

Подробности никем не рассказаны. Но вот деталь: начиная с 13 февраля и до 6 марта он не написал ни одного письма.

Расспрашивая его о тех днях, Томас Кун изумлялся неправдоподобной быстроте, с какою все было сделано. И уверял Бора, что такие вещи возможны, только если у исследователя еще перед началом работы «все части целого уже в руках». А Бор мягко возражал:

— Да, но это было не так. Понимаете ли, прежде всего, мы работали очень быстро. А главное состояло в том, что вела вперед общая идея…

В этом-то разговоре, чтобы уж сполна объяснить стремительность того успеха, он и произнес слова об откровении. Снизойдя на минуту (а больше и не надо!), оно ушло, оставив свою тень-заместительницу — долго непреходящее вдохновение.

…Были часы, когда даже Маргарет — «ах, я ничего не понимала в физике!» — могла легко оценить его результаты. Она разделила его торжество, когда он вывел формулу для диаметра электронных орбит и подучил размер водородного атома, равный примерно 10^(-8) см. Одна стомиллионная сантиметра — физики давно уже были знакомы с этой величиной по косвенным оценкам. Теперь она возникла прямо из теории атома! Или другое число: 109 000 — для константы Ридберга, входившей во все спектральные формулы. Ее экспериментальное значение было равно 109 675. Могло ли не произвести сильнейшего впечатления такое наглядное согласие теории с опытом!

Труднее поддавались столь же простому пониманию его логические радости. Была среди них одна, бесконечно важная для него. Он не доверился бы своим руководящим идеям, если б они оставляли пропасть между микро — и макромирами. Природа такой пропасти не знала: большой мир осязаемых и зримых вещей был построен из невидимых атомов. И не существовало пограничного рва с уведомлением: «по сю сторону — квантовый мир, по ту сторону — классический». Первый должен был естественно переходить во второй. На тогдашнем языке Бора это называлось «соображениями аналогии» между квантами и классической механикой, а позже стало называться «Принципом соответствия».

Бор легко нашел этот принцип в формулах своей теории. В самом деле, лестница разрешенных уровней энергии в атоме обладала замечательным свойством: чем выше она поднималась, тем ниже становились ступеньки. Так выглядит всякая высокая лестница при взгляде снизу: ступеньки сходят на нет и сливаются в вышине — там их уже не пересчитать. Но атомная лестница не просто выглядела так, а была в действительности такой: по мере удаления от ядра разрешенные уровни все меньше отличались от соседних. И в конце концов сливались в пологий пандус. Квантовые скачки делались все неприметней, и переход из одного стационарного состояния в другое становился неотличимым от непрерывного. Из-под власти квантовых законов электрон постепенно поступал в распоряжение классической физики.

Так естественное единство микро — и макромиров, сохраняясь невредимым, получало понятное объяснение. И возникало столь же естественное единство новых и старых физических представлений. Все получалось верно: разрыв и единство сосуществовали. Бор-философ и Бор-физик испытывали чувство равного удовлетворения.

1

…Первое письмо после трехнедельного марафона он написал тотчас же, едва Маргарет поставила точку под перебеленным текстом.

Копенгаген, 6 марта 1913

Дорогой проф. Резерфорд!

…Посылаю первую часть моей работы о строении атомов… Я был бы очень рад, если бы смог опубликовать законченную главу как можно быстрее.

…Поэтому я буду чрезвычайно признателен Вам, если Вы найдете возможным доброжелательно препроводить предлагаемую первую главу в Philosophical Magazine.

Надеюсь, Вы сочтете, что я подошел с приемлемой точки зрения к тонкой проблеме одновременного использования старой механики и новых представлений, введенных теорией излучения Планка. Мне так хотелось бы знать, что Вы подумаете обо всем этом…

А дальше он изложил еще одну просьбу к Резерфорду — на сей раз не о покровительстве, а об экспериментальной помощи:

…Как Вы увидите, теоретические соображения этой первой главы привели меня к иной, чем общепринятая, интерпретации вопроса о происхождении некоторых серий в спектрах звезд и тех спектральных линий, какие недавно наблюдал Фаулер в вакуумной трубке, наполненной водородом и гелием. Вместо приписывания их водороду я попытался показать, что их следует приписать гелию. Это можно было бы, однако, проверить экспериментально… У нас в Копенгагене нет сейчас условий, чтобы провести такой эксперимент удовлетворительно; поэтому я решаюсь попросить Вас, если это возможно, осуществить его в Вашей лаборатории…

Уединенные поиски понимания атома кончились. Самое тревожное и желанное, что может дать теория, — предсказание — он отдавал на суд экспериментаторов. Резерфордовцев! И не мог не подумать о захолустности физики в милом его сердцу Копенгагене. Меж тем именно в те дни уже началось превращение датской столицы в столицу квантовой механики. Но это еще таилось в ряду всего, чему суждено было прийти после. А пока…

…Когда я окончу мою работу, надеюсь, мне удастся ненадолго приехать в Манчестер. Я с превеликим удовольствием предвкушаю эту возможность.

Он никак не предполагал, что через две недели ответ Резерфорда заставит его поспешно и без всякого удовольствия броситься в Манчестер, не дожидаясь окончания работы над остальными главами.

Манчестер, 20 марта 1913

Дорогой д-р Бор!

Ваша статья пришла в полной сохранности, и я прочел ее с большим интересом, но мне хочется тщательно просмотреть ее снова, когда выдастся больше досуга. Ваши взгляды на механизм рождения водородного спектра очень остроумны и представляются отлично разработанными. Однако сочетание идей Планка со старой механикой делает весьма затруднительным физическое понимание того, что же лежит в основе такого механизма. Мне сдается, что есть серьезный камень преткновения в Вашей гипотезе, и я не сомневаюсь, что Вы полностью сознаете это, а именно: как решает электрон — с какою частотой должен он колебаться, когда происходит переход из одного стационарного состояния в другое? Мне кажется, Вы будете вынуждены допустить, что электрон заранее знает, где он собирается остановиться…

Бор читал и перечитывал этот первый абзац, снова и снова поражаясь проницательности Резерфорда — беспощадной физичности его мышления.

Скачки электронов пока что и вправду выглядели мистически. Величина излучаемого кванта — его частота — целиком зависела от размаха скачка. И потому в момент НАЧАЛА перескока уже все определял его КОНЕЦ. Оттого что всякий квант одноцветен, частота по дороге измениться уже не могла. Электрону предлагался набор возможных перескоков, но облюбовать одну из нижних орбит он должен был заблаговременно, дабы «решить, с какой частотой колебаться» в пути. Что же это выходило — электрону дозволялось делать свободный выбор?!

Угроза нависла не только над классической физикой. Над классическим пониманием причинности. Резерфорд не ошибался — Бор это «полностью сознавал». Но у него выбора не было! Он мог бы отшутиться: в отличие от электрона не было у него выбора. Как, впрочем, и у Резерфорда, когда тот провозглашал классически невозможную планетарную модель. Оставалось положиться на будущее понимание.

В ряду всего, чему предстояло прийти после, таилось и это.

Бор навсегда запомнил тот первый абзац из письма Резерфорда. Через сорок пять лет, в Мемориальной лекции памяти Папы, он назвал те сомнения Резерфорда «очень дальновидными». Однако не затем, чтобы развеять их, бросился он тогда, в марте 13-го года, за билетом в Манчестер. Его погнала в дорогу другая беда. Может быть, еще поправимая.

Он продолжал читать, слыша голос Резерфорда:

…Я думаю, что в своем стремлении быть ясным Вы уступаете тенденции делать статьи непомерно длинными. Не знаю, отдаете ли Вы себе отчет, что длинные сочинения отпугивают читателей, чувствующих, что они не найдут времени в них углубиться.

Сначала Бор ощутил только легкое смущение, какое всегда испытывает человек, уличаемый в многословии. Он ведь хотел как лучше. Резерфорд верно понял — это от стремления быть ясным. Но к концу письма тон отеческого увещевания сменился властной нотой. И когда Бор дошел до постскриптума, ему стало решительно не по себе. Он страдальчески посмотрел на Маргарет и упавшим голосом прочел вслух:

P. S. Полагаю, Вы не станете возражать, если я по своему усмотрению вырежу прочь из Вашей статьи все те места, какие сочту необязательными? Пожалуйста, ответьте.

Что он мог ответить?

Когда тебе, озабоченному и макро — и микросмыслом написанного, говорят: «Скажи это же, но короче», всегда появляется опасность, что короче будет сказано уже не это!

Летом, в Манчестере, он видел, как сам Резерфорд работал над книгой о радиоактивности. Толстенная, дважды выходившая в прежние годы, она становилась в третьем издании еще толще: Папе было что сказать. Теперь ему, Бору, было что сказать…

Худшее заключалось в том, что, пока Резерфорд в Манчестере гневался на длину его работы, он в Копенгагене продолжал ее дополнять! Вдогонку первому варианту ушел второй. Почта из Англии разминулась с почтой из Дании. И он в смятении представлял себе, как Резерфорд уже держит в руках новый вариант —

— …Существенно расширенный, — рассказывал Бор в Мемориальной лекции. — Я почувствовал, что есть единственный способ поправить дело: немедленно отправиться в Манчестер и самому обо всем переговорить с Резерфордом.

Он явился в хорошо знакомый дом на Уилмслоу-роуд прямо с вокзала. И видится, как он дольше, чем нужно, вытирает ноги в прихожей, избавляя ботинки от черной слякоти манчестерского марта, а себя самого — от избыточной смеси скованности и волнения. А потом — распахнутые двери из белой столовой. Атлетическая фигура хозяина. И непомерный голос, радостно возвещающий не то домашним, не то всему Соединенному королевству о прибытии высокого гостя из Дании. И безнадежная мысль гостя, что этот-то голос он собирается пересилить…

Резерфорды были в тот будний вечер не одни. У них остановился давний друг из Монреаля — профессор Ив. Благодаря этой случайности нам осталось свидетельство человека, прежде ни разу не видевшего Бора, о том, как он выглядел тогда:

«В комнату вошел хрупкий юноша».

Неожиданное впечатление, если вспомнить резерфордовское прошлогоднее: «Бор — футболист». Ив нечаянно засвидетельствовал происшедшую в нем перемену — физическую цену кабинетного труда последних месяцев. И еще любопытно: постоянно ощущавший себя старшим среди сверстников, датчанин выглядел совсем юнцом.

Имя Бора ничего не сказало Иву. И оттого ему особенно запомнилась поспешность, с какою хозяин тотчас увел молодого гостя к себе в кабинет. Мэри Резерфорд объяснила Иву: «Это доктор философии из Копенгагена. Эрнст ставит его работы необычайно высоко».

Все последующее происходило без свидетелей. Оба участника поединка кое-что рассказали о нем впоследствии. А то, чего не рассказали, восстановимо без труда.

…Бор удрученно просмотрел оба варианта своей статьи — их уже коснулась рука Резерфорда. И с виноватостью в глазах слушал уверенные раскаты:

— Вы же знаете, мой мальчик, в английских правилах излагать вещи сжато в противоположность германской методе, почитающей добродетелью многоречивость.

Не так ли?

И обезоруживающая улыбка. И уже нетерпеливо:

— Я был бы рад услышать от вас самого, какие места вы готовы выбросить за борт. Полагаю, вы согласитесь — рукопись можно безболезненно укоротить на треть.

Резерфорд не импровизировал: все это почти дословно он уже написал Бору в новом письме. (Оно было в пути, и Маргарет предстояло читать его в одиночестве, с тревогой гадая, как там выпутывается из беды ее не слишком красноречивый Нильс.)

Всю дорогу Бор произносил прекрасные монологи, репетируя самозащиту и готовясь к худшему. Но ничто не могло быть хуже, чем это разрушительное «на треть!». Однако потому-то его решимость выстоять не сникла, а сразу окрепла. Затвердела от давления. Он и без того знал: всего труднее выдержать благожелательный гнет опыта и авторитета, когда воля постепенно расслабляется под гипнотизирующей силой властной личности. Но теперь он больше не боялся того, что позднее сам назвал «очарованием резерфордовской порывистости». И почувствовал: опасность незаметно сдаться миновала. Он собрал всю свою кроткую неуступчивость. Если Резерфорд — обвал, он будет скалой.

Менее всего он думал о защите своего литературного стиля. Да и откуда ему было знать, есть ли у него уже свой стиль. Но одно он знал наверняка, что не следовал чужой методе — ни английской, ни немецкой. Он следовал лишь потребностям своей мысли. Всего существенней был вопрос — только ли забота о читателях подспудно движет Резерфордом? Внезапно подумалось — может быть, впервые, — что ведь он и Папа — люди разных поколений. И все, что, на взгляд Резерфорда, уводило в сторону, на его взгляд — вело в будущее.

Гулким обвалам отвечала подробная тишина.

Они прокатывали текст строка за строкой. Исчезали ошибки в его английском языке. Дробились несносно громоздкие периоды. Вымарывались явные повторения: «Те, что возникали из-за ссылок на предшествующие работы», — объяснил позднее Бор. Он принимал эту прополку благодарно. Порою поеживался от внезапных уколов пристыженности. Порою с чувством ужасной неловкости сокрушался, что Папа тратит из-за него столько времени на пустяки…

Но время тратилось не на это, а на его неутомимую защиту смысловых извивов текста. Он опускал свою большую голову и вязью нескончаемой логики тихо удушал все возражения. И забывал сокрушаться, что уходит время. И уже не думал, что юно уходит на пустяки. И Резерфорд этого не думал. Все чаще раздавалось смиренное — без громыхания:

— Ну ладно, мой мальчик, пусть будет по-вашему…

— Дьявольщина! А кажется, вы правы, старина…

— Хорошо, сохраним и это место…

Время уходило вечер за вечером. Но, право же, не чувствуется, чтобы это мучило их. Им сладостно было утруждать свои головы размышлениями о реальной природе вещей. И оба навсегда запомнили те вечера.

…Когда весной 1961 года старый Вор, переживший Папу на четверть века, вспоминал далекое прошлое в узком кругу теоретиков — дело было в Москве, — кто-то полюбопытствовал:

— Как отнесся к вашей теории Резерфорд?

Он не сказал, что она глупа, но… — с ничуть не постаревшей своей застенчивостью улыбнулся Бор — но он никак не мог взять в толк, каким образом электрон, начиная прыжок с одной орбиты на другую, узнает, какой квант нужно ему испускать. — И, припомнив вечера в Манчестере, добавил: — Я ему говорил, что это как «отношение ветвления» при радиоактивном распаде, но это его не убедило.

Видно, как далеко от электронной структуры водородного атома уходили они в те мартовские вечера.

Отношение ветвления… Этот странный феномен должен был смущать мысль физика нисколько не меньше, чем квантовые скачки электронов. Иные из элементов распадались двояким способом. Вот радий-С: часть его атомов претерпевала альфа-распад и становилась теллу-ром-210, а другая часть переживала бета-распад и порождала полоний-214. Атому предлагались на выбор две судьбы. И ядро «заранее решало», что испустить — альфа-частицу или бета-электрон.

Параллель была разительной. Да только ничего не объясняла, как все параллели: к одной непонятности присоединялась другая — того же свойства. Но это-то и было сверхважно: того же свойства! В разных сферах жизни атома проступала общая черта — одинаково абсурдная с точки зрения вековечного здравомыслия науки. Однако удвоение абсурда не увеличивало его. Напротив: в «безумии» природы, как в поведении принца Датского, обнаруживалось «нечто систематическое».

Бор заговорил о двойном распаде потому, что Резерфорду эта странностъ успела стать привычной и уже не представлялась противоестественной. Можно было надеяться, что она позволит ему примириться и с квантовыми скачками. Примирения не произошло. Но не случилось и обратного: широта и старая отвага удержали Резерфорда от приговора — «не может быть!». И он не прорычал: «Придумайте-ка что-нибудь получше!?

…Среди любимых мыслей Бора — тех, что всегда просились в диалог и удостаивались частого повторения по самым непредвиденным поводам, — была одна излюбленнейшая: мысль о том, что такое глубокая мысль. Или — нетривиальная мысль. Или — содержательная мысль. Словом — мысль о самой мысли. Она звучала так. Утверждение тривиально и содержательность его неглубока, если прямо противоположное утверждение наверняка вздорно. А вот если и прямо противоположное полно смысла, тогда суждение нетривиально.

Когда он впервые высказывал ото собеседникам из числа ближних и спрашивал, согласны ли они е ним, многие честно уходили от немедленного ответам «Погоди, Нильс, дай минутку подумать!» И он давал им минутку подумать, а потом радовался согласию, добытому размышлением…

Возможно, он озадачил и Резерфорда на одном из поворотов их тогдашней дискуссии, вдруг сказав, что наконец-то перестала быть тривиальной старая идея классической механики — «природа никогда не делает скачков!». И в ответ на грозное недоумение Папы тотчас объяснил: — Дело в том, что теперь наполнилась физическим смыслом и прямо противоположная идея, что природа только тем и занята, что делает скачки!

В общем, получалось так, что классической физике просто неслыханно повезло оттого, что пришла пора расставания с ее заслуженными догмами.

Словом, в те мартовские вечера у них было достаточно оснований не щадить времени. Мысль, что они люди разных поколений, посетила и Резерфорда. Может быть, впервые он, Папа, действительно ощутил себя в лагере отцов. От идей датчанина веяло уже каким-то новым способом физического мышления. Железная власть однозначной причинности — несокрушимого символа веры классического естествознания — видимо, не очень тяготела над ходом мыслей этого большеголового юнца. И были минуты, когда сознанье иной правоты — не доказательности, а молодости — заставляло надолго замолкать Резерфорда. И, переставая слушать Бора, он принимался смиренно думать об удручающем беге времени. Младший был еще слишком молод, чтобы оценить это непростое смирение. Бор рассказывал в Мемориальной лекции:

«…Резерфорд был почти ангельски терпелив со мною и после дискуссий, длившихся несколько долгих вечеров, когда он не раз объявлял, что никак не думал, будто я окажусь таким упрямым, согласился оставить в окончательном варианте статьи все старые и новые проблемы. Но, разумеется, стиль и язык статьи подверглись существенному улучшению благодаря его помощи и советам…»

А Леон Розенфельд имел случай послушать и другую сторону:

«На Резерфорда произвели такое сильное впечатление глубокая вдумчивость, с какою работал Бор над текстом, и неуступчивость, с какою защищал он каждое написанное слово, что и через много лет ему живо помнился тот эпизод. И, узнав, что мне доводилось помогать Бору в работе над письменным изложением его лекций, Резерфорд с особым удовольствием предался этому воспоминанию».

…Меж тем кончился март и начался апрель.

Ветер над Северным морем изо всех сил возвещал весну. И в совершенно весеннем настроении возвращался домой доктор философии Копенгагенского университета Нильс Бор. Теперь он мысленно репетировал свой рассказ. Маргарет обо всех перипетиях одержанной победы. Помеченная датой 5 апреля 1913 года и снабженная благословением члена Королевского общества Резерфорда, первая его статья о квантовой конституции атома уже держал путь в редакцию Philosophical Magazine.

Знал ли он тогда, что эта статья станет началом новой эпохи в теоретическом познании микромира?

Безусловно знал. Наверняка!

А скромность?

«Краешком истины» назвал Эйнштейн то, что ему открылось в природе. «Кусочком реальности» назвал Бор то, что природа открыла ему.