"Звезды: их рождение, жизнь и смерть" - читать интересную книгу автора (Шкловский Иосиф Самуилович)Глава 1 Звезды: основные наблюдательные характеристикиКак говорится, лучше не скажешь. Поколения астрономов кропотливо собирали огромный фактический материал, касающийся самых разнообразных характеристик звезд. Какие же из этих характеристик можно получить из анализа результатов наблюдений? Прежде всего надо понять, что звезды, за редчайшими исключениями, наблюдаются как «точечные» источники излучения. Это означает, что их угловые размеры ничтожно малы. Даже в самые большие телескопы нельзя увидеть звезды в виде «реальных» дисков. Мы подчеркиваем слово «реальных», так как благодаря чисто инструментальным эффектам, а главным образом неспокойствию атмосферы, в фокальной плоскости телескопов получается «ложное» изображение звезды в виде некоторого диска. Угловые размеры этого диска редко бывают меньше одной секунды дуги, между тем как даже для ближайших звезд они должны были быть меньше сотой доли секунды дуги. Итак, звезда даже в самый большой телескоп не может быть, как говорят астрономы, «разрешена». Это означает, что мы можем измерять только
Полезно еще знать, что Солнце имеет визуальную звездную величину Эта величина носит название «солнечной постоянной». Не представляет труда по известной видимой величине какой-нибудь звезды, цвет которой такой же, как у Солнца, оценить величину ее потока в абсолютных (энергетических) единицах. Допустим, что видимая величина звезды откуда Если мы теперь каким-нибудь образом знаем расстояние до звезды
Если, в нашем примере, расстояние до звезды равно 100 парсек (1 парсек (пс) = 3
где Таким образом, одна из основных характеристик звезды — светимость— определяется, если известна видимая величина и расстояние до нее. Если для определения видимой величины астрономия располагает вполне надежными методами, то расстояния до звезд определить не так просто. Для сравнительно близких звезд, удаленных на расстояние, не превышающее нескольких десятков парсек, расстояния определяются известным еще с начала прошлого столетия тригонометрическим методом, заключающимся в измерении ничтожно малых угловых смещений звезд при их наблюдении с разных точек земной орбиты, т. е. в разное время года. Этот метод дает наибольшую точность и очень надежен. Однако для огромного большинства более удаленных звезд он уже не годится: слишком малые смещения положения звезды надо измерять — меньше сотой доли секунды дуги! На помощь приходят другие методы, значительно менее точные, но тем не менее достаточно надежные. В ряде случаев абсолютную величину звезд можно определить и непосредственно, без измерения расстояния до них, по некоторым наблюдаемым особенностям их излучения. На всех этих методах мы, конечно, останавливаться здесь не можем и отсылаем интересующихся читателей к специальным руководствам, например, к содержательной книге Ю. Н. Ефремова «В глубины Вселенной» («Наука», 1977). Вообще, проблема определения расстояния до удаленных космических объектов (звезд, туманностей, галактик) всегда была и сейчас остается одной из центральных в астрономии. Исключительно богатую информацию дает изучение Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам (рис. 1.1). Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Прежде всего, в итоге большой работы удалось выполнить количественный химический анализ этих слоев. Несмотря на то, что спектры звезд очень сильно отличаются друг от друга, химический состав в первом приближении оказался удивительно сходным. Различия в спектрах в первую очередь объясняются различием в температурах наружных слоев звезд. По этой причине состояние ионизации и возбуждения разных элементов в наружных слоях звезд резко отличается, что приводит к сильным различиям в спектрах.
Химический состав наружных слоев звезд, откуда к нам «непосредственно» приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов сравнительно невелико. Приблизительно на каждые 10 000 атомов водорода приходится тысяча атомов гелия, около десяти атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Этот результат, как мы увидим дальше, имеет исключительно важное значение для всей проблемы строения и эволюции звезд. Хотя химический состав звезд в первом приближении одинаков, все же имеются звезды, показывающие определенные особенности в этом отношении. Например, есть звезды с аномально высоким содержанием углерода, или встречаются удивительные объекты с аномально высоким содержанием редких земель. Если у подавляющего большинства звезд обилие лития совершенно ничтожно ( Все эти интересные и, несомненно, очень важные аномалии химического состава звезд мы в этой книге, конечно, рассматривать не можем. Это увело бы нас слишком далеко в сторону. К счастью, для основной интересующей нас проблемы эволюции звезд эти редчайшие исключения, обусловленные некоторыми специфическими процессами в их наружных и внутренних слоях, не имеют большого значения. Хорошим индикатором температуры наружных слоев звезды является ее Знание спектрального класса или цвета звезды сразу же дает температуру ее поверхности. Так как (как уже говорилось выше) звезды излучают приблизительно как абсолютно черные тела соответствующей температуры, то мощность, излученная единицей их поверхности, определяется из закона Стефана — Больцмана:
где
где Нам остается определить еще одну, едва ли не самую важную характеристику звезды — ее
Здесь Если известны спектры обеих компонент (что бывает сравнительно редко), то можно определить величины В сущности говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы Все же для нормальных звезд с учетом оговорок, сделанных выше, массы определяются с удовлетворительной точностью. Итак, современная астрономия располагает методами определения основных звездных характеристик: светимости, поверхностной температуры (цвета), радиуса, химического состава и массы. Возникает важный вопрос: являются ли эти характеристики
Однако изображенная на рис. 1.2 диаграмма не является, если можно так выразиться, «представительной». На рис. 1.2 нанесены
Однако самым значительным различием между обсуждаемыми диаграммами является наличие на диаграмме, изображенной на рис. 1.3, последовательности, вернее, группы «гигантов», расположенных в верхнем правом углу. Это звезды высокой светимости, поверхностные температуры которых сравнительно низки (спектральные классы К и М). Отсюда следует, что радиусы этих звезд очень велики, в десятки раз больше солнечного. Они получили названия «красных гигантов», объекты же наибольшей светимости, принадлежащие к этой группе звезд, называются «сверхгигантами». Особый интерес для проблемы эволюции звезд, как эта будет видно в § 12, представляют диаграммы Герцшпрунга — Рессела, построенные для более или менее компактных групп звезд, получивших название «скоплений». Различают два типа скоплений — «рассеянные» и «шаровые». Помимо своей весьма правильной, сфероидальной формы, шаровые скопления отличаются огромным количеством входящих в их состав звезд (порядка сотни тысяч) и весьма характерным пространственным распределением. Они совершенно не концентрируются к галактической плоскости и обнаруживают сильнейшую концентрацию к центру нашей звездной системы. Как показывают спектральные исследования, входящие в состав шаровых скоплений звезды бедны металлами и вообще тяжелыми элементами. В этом отношении (так же как во многих других) звезды, входящие в состав таких скоплений, тождественны субкарликам, имеющим, кстати сказать, такое же пространственное распределение в Галактике. Важность построения диаграмм Герцшпрунга — Рессела для звездных скоплений состоит в том, что все члены одного скопления по причине того, что они образовались из одного газово-пылевого облака межзвездной среды, имеют приблизительно одинаковый возраст. Бросается в глаза, что вид диаграмм Герцшпрунга — Рессела для различных скоплений весьма различен. Например, начало главной последовательности у разных скоплений приходится на различные спектральные классы. Заметим также, что общий вид диаграммы для рассеянных и шаровых скоплений весьма различен (рис. 1.4—1.8). О причине этих примечательных различий речь будет идти в § 12. Подчеркнем еще раз, что создание таких диаграмм[ 1 ], потребовавшее большого труда по прецизионному измерению видимых величин и цветов огромного количества звезд, имеет непреходящее значение для нашей науки. Построение таких диаграмм не требует знания расстояний до скоплений. Важно только то, что все звезды скопления находятся от нас на практически одинаковом расстоянии. Сейчас известны диаграммы Герцшпрунга — Рессела более чем для 300 скоплений в нашей Галактике и 50 скоплений в Магеллановых Облаках, причем не найдено ни одного скопления, для которого диаграмма была бы необъяснима сточки зрения развиваемой далее теории.
Мы уже обратили внимание на весьма специфическое пространственное распределение шаровых скоплений и субкарликов. Эти объекты образуют в нашей Галактике подобие некоторой почти сферической «короны» с сильной концентрацией к галактическому центру. Вместе с тем, пространственное распределение других объектов сильно отличается от «сферического». Например, массивные горячие звезды главной последовательности, а также, как мы увидим в следующем параграфе, облака межзвездного газа образуют в нашей Галактике весьма уплощенную систему, концентрирующуюся к плоскости галактического экватора. На расстояниях, заметно превышающих 100 пс от указанной плоскости, таких объектов уже очень мало: Пространственное распределение большинства звезд главной последовательности с умеренной и малой массой является как бы «промежуточным» между двумя описанными выше крайними случаями. Эти звезды концентрируются одновременно и к галактическому центру, и к галактической плоскости, образуя гигантские диски толщиною в несколько сотен парсек[ 2 ].
Различие в пространственном распределении между звездами разных типов имеет очень глубокий физический смысл. Весьма примечательно, что химический состав звезд, имеющих разное пространственное распределение, заметно отличается. Мы уже обратили внимание на то, что атмосфера субкарликов весьма бедна тяжелыми элементами. То же самое относится и к звездам, входящим в состав шаровых скоплений. Таким образом, мы приходим к выводу, что объекты, образующие «корону» Галактики, имеют низкое содержание тяжелых элементов по сравнению с объектами, образующими «плоскую составляющую» и диск в нашей звездной системе. Это обстоятельство объясняется существенным различием возрастов звезд, образующих «сферическую» и «плоскую» составляющие звездного населения Галактики. Из того факта, что облака межзвездного газа имеют пространственное распределение; практически совпадающее с пространственным распределением горячих массивных звезд, вытекает наличие между ними генетической связи. Это дополняет известные в настоящее время астрономам аргументы в пользу основного предположения, что звезды «перманентно» образуются в Галактике путем конденсации облаков межзвездной среды (см. § 3). О связи между возрастом звезд и их химическим составом речь будет идти в § 12. Звезды, образующие галактическую «корону», часто называют «населением II типа», в то время как объекты, сильно концентрирующиеся к галактической плоскости, носят название «население I типа». В окрестностях Солнца (которые находятся, как известно, на периферии Галактики очень близко от ее плоскости симметрии) преобладают объекты I типа населения. Именно по этой причине на диаграмме Герцшпрунга — Рессела ветвь субкарликов (принадлежащих ко II типу населения) представлена сравнительно небольшим числом объектов. Наоборот, в области ядра нашей звездной системы, где плотность звезд в десятки раз больше, чем в окрестностях Солнца, преобладают объекты II типа населения, прежде всего субкарлики. Их полное количество в Галактике порядка 100 миллиардов, т. е. они составляют большинство звезд.
Таковы самые общие сведения об основных характеристиках звезд. Они, конечно, далеко не исчерпывают всех свойств этих объектов. Среди звезд попадаются объекты, сильно отличающиеся от «нормы». Мы уже говорили выше о звездах с необычнымхимическим составом. Имеются в Галактике звезды, светимость которых меняется. Это так называемые «переменные» звезды. Последние отличаются удивительным разнообразием. Иногда переменность вызывается чисто геометрическими причинами: в тесной двойной системе, если луч зрения образует незначительный угол с плоскостью орбиты, периодически наблюдаются «затмения», когда одна звезда заходит за другую (рис. 1.9). Но чаще звездная переменность связана с вполне реальными вариациями светимости, обычно сопровождаемыми изменениями поверхностной температуры и радиуса. Среди переменных звезд особый интерес представляют звезды, строго периодически меняющие свою светимость, радиус и температуру по причине Гораздо чаще встречается звездная переменность непериодического характера: время от времени наблюдаются более или менее значительные повышения уровня излучения, часто носящие «вспышечный» характер. Очень распространена «вспышечная» активность у красных карликовых звезд. Значительная, если не большая, часть красных карликов спектрального класса М — это вспыхивающие звезды. Во время вспышек, длящихся обычно десятки минут, светимость таких звезд увеличивается в десятки раз, причем одновременно наблюдаются всплески радиоизлучения, а также рентгеновского излучения. По-видимому, в этом случае наблюдается феномен, аналогичный солнечным вспышкам, но только в гораздо большем масштабе. Вообще такой тип переменности звезд связан с нестационарными процессами в их поверхностных слоях. Особняком стоит группа «взрывающихся» звезд — новых и сверхновых. Если вспышки новых не связаны с коренным изменением структуры звезды (см. ниже § 14), то вспышки сверхновых, которые происходят чрезвычайно редко, сопровождаются катастрофическими изменениями звездной структуры. Это редчайшее явление настолько важно для астрономии, что ему будет посвящена отдельная глава этой книги. Все же большая часть звезд в Галактике, масса которых не очень мала (например, больше 0 |
|||||||||||||||||||||||||||||||||||||||||
|