"В.Н.Щеглов. Творческое сознание: интерпретация алгоритма построения " - читать интересную книгу авторапроцесс получения метанола в промышленных условиях по цеховым данным. В
начале соответствующие переменные разбивались по медиане на булевы значения 0 и 1. Далее использовалась процедура получения выводов, весьма сходная с методами минимизации булевых функций. Результат получился превосходный: в виде тупиковой дизъюнктивной формы выявилась структура этого сложного технологического процесса, в основном совпадающая с уже известными теоретическими закономерностями, что позволяло сделать первоначальный вывод о ценности этого метода, например, для дальнейших проектных технологических разработок. Работа была доложена в Совете по кибернетике и сразу опубликована в журнале "Химическая лаборатория", который издавался в те годы миллионным тиражом и переводился на английский в США; затем последовала публикация в ДАН. В дальнейшем, когда на основании этого метода стали защищать диссертации, был разработан более общий метод построения АМКЛ также путем "мысленного эксперимента", соответствующая теория стала известна лишь в январе 1980 года после выхода в свет [5]. Возможно, действительно существует некоторое почти одновременное взаимодействие ученых с миром математических идей Платона. При исследовании сложных объектов с помощью интуиционистских моделей математической логики [5] и, в частности, АМКЛ, обращает на себя внимание следующий факт. Интуиционистские модели (Бета-Крипке) могут быть истолкованы как возможные состояния знания некоторого познающего субъекта, как модели творческого сознания. С помощью самой структуры или способа построения этих моделей удалось показать в дальнейшем достаточно интересные алгоритмические интерпретации квантовой теории, теории калибровочных полей и общей теории относительности, квантовой теории калибровочных полей, квантовой теории нейронов мозга, особых состояний сознания, структуры качественных выводов из астрономической модели Керра, сопоставить структуру библейских заповедей с этапами построения АМКЛ [6] ). Возможно, любую достаточно интересную и сложную область познания можно интерпретировать с помощью этих достаточно гибких по своему построению интуиционистских моделей (в дальнейшем будем писать "моделей"). Формализация этого подхода может по мере накопления опыта и новых данных постепенно уточняться и специализироваться при изучении отдельных областей знания. Можно рассматривать эти модели как некоторый "переводчик" терминов, взятых из специализированных областей знания на язык построения моделей; они являются как бы некоторым формализованным познающим субъектом. Познание здесь осуществляется в виде алгебраических моделей интуиционистской логики (модели Бета-Крипке). Эти модели отображают динамику состояний ("свободно становящихся последовательностей"), или динамику знаний некоторого "познающего" субъекта (алгоритма вычисления АМКЛ). Приведем краткое описание этого алгоритма, детальное описание и множество примеров приведено в [6]. В исходном массиве действительных чисел (или чисел k-значной логики) Х(n+1, m), где n - число переменных (столбцов в Х), выделяется один или несколько столбцов Y, для которых Y = f(X). Значения Y разбиваются на k частей (обычно на 2 по медиане), и эти значения кодируются, например, Z = 0, 1, ... Далее каждое состояние, которому задано определенное целевое значение Z, сравнивается со всей своей окрестностью не целевых состояний, начиная с ближайших и строятся конъюнкции К малого числа (ранга) r открытых интервалов значений переменных для этого целевого состояния. Эти К (по всем целевым |
|
|