"В.Н.Щеглов. Основные понятия синергетики: сопоставление с построением алгебраических моделей интуиционистской логики" - читать интересную книгу авторарезультатов функционирования самого алгоритма построения АМКЛ), которые в
итоге приписывают как самому алгоритму построения, так и различным параметрам модели, записанной в общем виде (например, функционалам К и Г) их определенные смысловые значения в различных ситуациях. Эти соглашения могут уточняться по мере накопления новых сведений о применении этих соглашений в определенной содержательной области. Следует отметить, что, возможно, лишь интуиционистские модели в настоящее время позволяют как бы более тонко "настроить" способы понимания, семантику получаемых выводов из моделей, относящихся к определенному содержательному виду. Будем записывать далее нумерованный список некоторых сложных понятий, относящихся к синергетике. Эти понятия будем далее сопоставлять с различными стадиями функционирующего алгоритма или с наличием различных параметров модели, например, функционалов К и Г (здесь как бы составляется словарь заранее согласованного "перевода" слов с одного языка на другой). Общие понятия в этих соглашениях, относящиеся к содержательной интерпретации исходных терминов будем записывать в качестве пояснения курсивом. Ссылка на литературу для каждого элемента списка приводится лишь один раз - она относится и к последующим элементам списка, вплоть до очередной новой ссылки (внутри поясняющего текста могут быть свои ссылки). 1. Хаотические системы допускают описания не в терминах отдельных траекторий или отдельных волновых функций в квантовой механике, а в терминах ансамблей траекторий [10]. - Согласно алгоритму построения АМКЛ отдельные выводы К в геометрическом представлении являются некоторыми r-мерными ячейками, включающими в себя отдельные целевые точки-состояния (строки) из процессе реализации интуиционистских свободно становящихся последовательностей [6], - хаос как малые флюктуации Мира) эта ячейка в случае больших r превращается во многомерную трубку, которая по ходу эволюции исследуемого объекта может прекратить свой рост, преобразовываться в две (бифуркация) или на несколько трубок, исходящих из начальной и т. д. Каждая такая трубка содержит ансамбль траекторий, соответствующих Г(t) своих исходных целевых состояний. 2. Необратимость событий. - Во время управления объектом весьма трудно совершенно точно удержать по ходу времени заданный режим: обычно существует масса неуправляемых воздействий и даже скрытых (неизвестных) переменных, которые переводят этот режим в новое состояние. Это явление наблюдается как в ходе эволюции (динамики) объекта, так и в случае катастрофы [11]. - Задана векторная функция Y, ей соответствует набор столбцов z булевых значений соответствующей функции Z. Пусть задана (для управления) некоторая сложная цель: желательно, чтобы каждое новое состояние при реализации процесса имело бы некоторое определенное значение сложной булевой функции Z, например, кортеж Z* = (1, 0, 0, 1, ...) = 1*. Реализовать такое управление в общем случае весьма трудно. В динамическом массиве данных (Х, Y, t) для заданного числа состояний m в каждый момент t таких Z* может быть весьма мало - тогда модель будет очень малые оценки, иногда цель Z* вообще не реализуется. Возникает отказ от построения такой модели - "катастрофа". В таких случаях обычно производится последовательный сдвиг точек разбиения отдельных функций у в нужную сторону от медианы, чтобы в итоге было приближение к Z*. Следует заметить, что такое приближение всегда уменьшает оценки моделей. Другой |
|
|