"Сергей Шилов. Механика времени" - читать интересную книгу авторафизика формализации числа. Не случайно Планк весьма сдержано относился к
квантовой механике, так до конца своей жизни не расставшись с "классическими" (истинностными) взглядами. Механика времени ведет к радикальному пересмотру оснований термодинамики как неистинного (неполного) = вероятностного физического описания (Об этом - работа автора "Хроника. Дефиниции меганауки"). Здесь же достаточно сказать о том, что механика времени не нуждается в гипотезе термодинамики. Вопрос о "равновесии материи и излучения", поставленный Планком, есть, таким образом, вопрос о представлении чисел в виде суммы двух, квадратов, который исчерпывается следующим утверждением: Натуральное число представимо в виде суммы двух квадратов целых чисел тогда и только тогда, когда все простые сомножители вида 4k+3 входят в разложение этого числа на простые сомножители с четными показателями. Теорема Лагранжа гласит, что всякое натуральное число есть сумма четырех квадратов целых чисел. После теоремы Ферма---Эйлера математики описали все числа, представимые в виде суммы двух квадратов. Числа, представимые в виде суммы трех квадратов описал Гаусс в 1801 году. Таким образом, наличествует истинное формальное знание, необходимое для открытия действительных привилегированных систем отсчета (исчислений), связанных с действием мировых линий простых чисел 17. Фундаментальной закономерностью механики времени как всеобщей истории числа является Теорема Ферма---Эйлера о представлении простых чисел в виде суммы двух квадратов. Условием возможности математического анализа как имманентной теории числа является физическая (численностная) реальность Можно описать все целочисленные решения уравнения x2+y2=z2. Это было сделано Диофантом, греческим математиком, жившим (вероятно) в III веке нашей эры, во второй книге его трактата "Арифметика". На полях около решения Диофанта Ферма написал: "Нельзя разложить куб на два куба, ни квадрато-квадрат (т. е. четвертую степень числа) на два квадрато-квадрата, ни вообще никакую степень выше квадрата и до бесконечности нельзя разложить на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки". Иначе говоря, уравнение xn+yn=zn при натуральном n>2 в целых числах неразрешимо. В бумагах Ферма было найдено доказательство этого утверждения для n=4. Для n=3 теорему Ферма доказал Эйлер в 1768 году. Математики не заметили, не замечая физическое существование числа, что вторая теорема Ферма "Для того чтобы нечетное простое число было представимо в виде суммы двух квадратов, необходимо и достаточно, чтобы оно при делении на 4 давало в остатке 1" является доказательством Великой теоремы при наличии одного априорного положения. Ферма приоткрывает замысел доказательства в целом, когда пишет, что "основная идея доказательства состоит в методе спуска, позволяющем из предположения, что для какого-то простого числа вида 4n+1 заключение теоремы неверно, получить, что оно неверно и для меньшего числа того же и т. д., пока мы не доберемся до числа 5, когда окончательно придем к противоречию". "Удивительная суть" всеобщего доказательства Ферма состоит в открытии того априорного положения, для выражения которого ему категорически не могло хватить математического языка, |
|
|