"Александр Звонкин, Вадим Левин. Домашняя школа для дошкольников " - читать интересную книгу авторане через освоение готовых знаний, а через собственные наблюдения,
впечатления и размышления, ребенок сохраняет свое видение мира, а значит и способность к самостоятельным открытиям (а не только к использованию опыта предков). Хочу рассмотреть один пример более подробно. Увлекательная, если сначала пощупать руками Всего лишь одна простая задачка - а как много она дает поводов для размышлений! Здесь и психология, и педагогика, и математика (и даже чуточку философия) сплелись в нерасторжимый узел. Вот сейчас увидите. Задача эта относится к области комбинаторики. Когда-то такую науку проходили в школе, в девятом классе. Потом сочли очень трудной (вспомните хотя бы такое пугало, как бином Ньютона!) и из программы исключили. А все трудности старшеклассников состояли попросту в том, что им приходилось сразу начинать с формул, не пощупав ничего руками. В данном случае выражение "пощупать руками" надо понимать буквально. Ведь в комбинаторике речь идет о подсчете количества тех или иных комбинаций предметов. Только самих предметов-то нет - их надо вообразить, и комбинации тоже. Вот если бы начать с комбинирования реальных кубиков, фишек... Мы рассаживаемся вокруг мозаики. Любопытно, связан ли порядок в игрушках с порядком в мыслях? Задание такое: надо построить "бусы" - цепочку из пяти фишек, в которой две фишки должны быть черными, а оставшиеся три - белыми. Это, разумеется, том, чтобы перебрать все способы и при этом избежать повторений. [Image14.gif (8772 bytes)] Рис. 1. По науке эти последовательности называются сочетаниями из пяти элементов по два: их количество обозначается С25 и равно { 5х(5?1)} 2 = 10. Ничего этого дети, конечно, не знают и на наших занятиях не узнают. Они просто строят бусы - по очереди, один за другим. Каждый результат проверяется всеми вместе - действительно ли он новый или совпадает с каким-нибудь из построенных ранее. Порой и спорим. [Image15.gif (1360 bytes)] Рис. 2. Например, вот это (рисунок 2) - одно решение или два разных? В конце концов доходим до десяти решений. Главный вопрос комбинаторики - сколько всего имеется решений. Но мальчики еще очень далеки от него. Они вообще пока не видят разницы между "это невозможно" и "у меня не получается", и выражают твердую уверенность в том, что уж я-то могу построить и одиннадцатое решение, и двенадцатое, и вообще сколько захочу. Приходится взяться за дело мне самому. Ребята перебирали свои решения как попало, без всякой системы. Зато я демонстрирую образец систематичности: перебираю решения в строго определенном порядке. Сначала ставлю одну черную фишку на первое место, а вторую - поочередно на второе, третье, четвертое, пятое места. Когда эта серия исчерпана, ставлю первую фишку на второе место, и т. д. Вы думаете, это производит впечатление? Ни малейшего. Единственное, что |
|
|