"Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует" - читать интересную книгу автора (Смолин Ли)

4 Объединение становится наукой

После того, как идея объединения всех четырех фундаментальных сил через придумывание новых размерностей потерпела крах, большинство физиков-теоретиков отказались от идеи связать гравитацию и другие силы, решение, которое имело смысл, поскольку гравитация значительно слабее, чем остальные три силы. Их внимание вместо этого привлек зоопарк элементарных частиц, который экспериментаторы наоткрывали на своих ускорителях частиц. Они исследовали данные в поисках новых принципов, которые могли бы, по меньшей мере, объединить все различные виды частиц.

Игнорирование гравитации означает шаг назад, к пониманию пространства и времени до ОТО Эйнштейна. Это была рискованная вещь, сделать так на долгом пути, так как это означает работать с идеями, которые уже были смещены. Но это имело и преимущества, так как этот подход привел к величайшему упрощению проблемы. Главный урок ОТО заключался в том, что нет фиксированной геометрии пространства и времени; игнорирование этого означало, что вы можете просто выбрать фон. Это отсылает нас назад к ньютоновской точке зрения, согласно которой частицы и поля населяют фиксированный фон пространства и времени – фон, чьи свойства фиксированы навечно.

Однако, нет необходимости проходить весь обратный путь к Ньютону. Можно работать в рамках описания пространства и времени, данного в СТО Эйнштейна в 1905. В соответствии с ней геометрия пространства и времени является той, которую задал Евклид, и ее изучали многие из нас в начале высшей школы; однако, пространство и время перемешаны, чтобы приспособиться к двум постулатам Эйнштейна, относительности наблюдателей и постоянства скорости света. Теория не может адаптировать гравитацию, но это правильные установки для максвелловской теории электрических и магнитных полей.

Раз квантовая механика была полностью сформулирована, квантовые теоретики обратили свое внимание на объединение электромагнетизма с квантовой теорией. Поскольку основным феноменом электромагнетизма являются поля, унификация, которая была в итоге получена, названа квантовой теорией поля. А поскольку СТО Эйнштейна является правильным подходом к электромагнетизму, эти теории можно также рассматривать как унификацию квантовой теории и СТО.

Было очень много стимулирующих проблем, чтобы применить квантовую теорию к частицам, поскольку поле имеет величину в каждой точке пространства. Если мы предположим, что пространство непрерывно, – как это декларируется в СТО, – то получим непрерывную бесконечность переменных. В квантовой теории каждая переменная подвержена принципу неопределенности. Одно следствие заключается в том, что чем более точно вы пытаетесь измерить переменную, тем более неконтролируемо она флуктуирует. Бесконечное число неконтролируемо флуктуирующих переменных может легко отбиться от рук. Когда вы задаете вопросы теории, вы должны быть очень аккуратны, чтобы не получить бесконечные или противоречивые ответы.

Квантовые теоретики уже знали, что для каждой электромагнитной волны имеется квантовая частица, фотон. Потребовалось всего несколько лет, чтобы разработать это в деталях, но в результате получилась просто теория свободно двигающихся фотонов; следующий этап заключался в присоединении заряженных частиц, таких как электроны и протоны, и в описании, как они взаимодействуют с фотонами. Целью была полностью последовательная теория квантовой электродинамики или КЭД. Это было намного более заманчивым. Впервые КЭД была прояснена японским физиком Син-Итиро Томонагой во время Второй мировой войны, но новости не достигли остального мира до 1948 или около того. К этому времени КЭД была еще дважды независимо сконструирована молодыми американцами Ричардом Фейнманом и Джулианом Швингером.

Когда КЭД была понята, встала задача распространить квантовую теорию поля на сильные и слабые ядерные силы. Это заняло следующую четверть века, и ключевым моментом стало открытие двух новых принципов: Первый определил, что общего имеют электромагнетизм и эти ядерные взаимодействия. Это было названо калибровочным принципом и, как я буду описывать, привело к объединению всех трех сил. Второй принцип объяснил, почему, хотя и объединенные, эти три силы столь различны. Он был назван спонтанным нарушением симметрии. Вместе эти два принципа формируют краеугольный камень стандартной модели физики частиц. Их точное применение привело к открытию, что частицы, вроде протона и нейтрона, не являются таки элементарными; вместо этого они построены из кварков.

Протон и нейтрон каждый имеют по три кварка, тогда как другие частицы, названные мезонами, имеют два (более точно, кварк и антикварк). Это открытие было сделано в начале 1960х независимо Мюрреем Гелл-Манном в Калтехе и Джорджем Цвейгом в Европейском центре ядерных исследований (ЦЕРН) в Женеве. Вскоре после этого Джеймс Бьоркен в Стэнфордском линейном ускорительном центре (SLAC) и Ричард Фейнман в Калтехе предложили эксперименты, которые, когда их позднее провели в SLAC, подтвердили, что протон и нейтрон на самом деле состоят из трех кварков каждый.

Открытие кварков было существенным шагом в направлении унификации, поскольку взаимодействие протонов, нейтронов и других частиц было чрезвычайно сложным. Но имелась надежда, что сами силы между кварками могут быть простыми и что наблюдаемые сложности возникают из-за того, что протоны и нейтроны являются составными объектами. Этот вид представлений был уже подтвержден ранее: в то время как силы между молекулами сложны, силы между атомами, которые их составляют, могут быть легко поняты в терминах электромагнетизма. Эта идея заставила теоретиков бросить попытки понять силы между протонами и нейтронами в фундаментальных терминах и, вместо этого, поинтересоваться, как эти силы влияют на кварки. Это редукционизм в действии – старый трюк, при котором законы, управляющие частями, часто проще, чем законы, управляющие целым, – и, в конце концов, он был награжден открытием глубокой общности, которая соединяет две ядерные силы, сильную и слабую, с электромагнетизмом. Все три взаимодействия являются следствиями простого, но мощного калибровочного принципа.

Калибровочный принцип лучше всего понять в терминах того, о чем физики говорят как о симметрии. На простом языке симметрия есть операция, которая не изменяет то, как себя ведет некоторая вещь по отношению к внешнему миру. Например, если вы вращаете мяч, вы не изменяете его, он все еще остается сферой. Так что, когда физики говорят о симметрии, они могут иметь в виду операцию в пространстве, вроде вращения, которая не изменяет результат эксперимента. Но они могут также говорить о другом виде изменения, которое мы проделываем над экспериментом, которое не изменяет его результата. Например, представим, что вы берете две группы котов – скажем, восточных котов и западных котов – и проверяете их способности к подпрыгиванию. Если нет разницы в среднем прыжке, который может сделать кот, тогда мы говорим, что подпрыгивание кота является симметричным относительно операции замены всех ваших восточных котов на западных котов.

Вот другой пример, упрощенный и идеализированный, чтобы сконцентрировать внимание. Рассмотрим эксперимент, в котором пучок протонов ускоряется, а затем направляется на мишень, состоящую из определенного вида ядер. Вы, как экспериментатор, наблюдаете узор, который создают протоны, когда они рассеиваются на ядрах в мишени. Теперь без изменения энергии или мишени вы заменяете протоны на нейтроны. В определенных случаях рисунок рассеяния почти не изменяется. Эксперимент обнаруживает, что вовлеченные в процесс силы действуют одинаково на протоны и нейтроны. Иными словами, акт замены протонов на нейтроны является симметрией сил, действующих между ними и ядрами в мишени.

Знание симметрий хорошая вещь, так как они говорят вам кое-что о вовлеченных силах. В первом примере мы узнали, что сила гравитации, действующая на котов, не зависит от их места происхождения; во втором примере мы узнали, что определенные ядерные силы не могут обнаружить отличие между протонами и нейтронами. Иногда все, что мы получаем из симметрии, есть такая частичная информация о силах. Но есть специальные ситуации, в которых симметрии полностью определяют силы. Это оказывается именно так для класса сил, именуемых калибровочными силами. Я не хочу докучать вам точными подробностями, как это работает, так как это нам не понадобится.[1] Но факт, что все свойства сил могут быть определены из знания симметрий, является одним из самых важных открытий физики двадцатого столетия. В этой идее смысл калибровочного принципа.[2]

Две вещи о калибровочном принципе нам необходимо знать. Первая, что силы, к которым он приводит, переносятся частицами, названными калибровочными бозонами. Вторая вещь, которую нам надо знать, это что электромагнитные, сильные и слабые силы все оказываются силами такого типа. Калибровочный бозон, который соответствует электромагнитной силе, называется фотон. Калибровочный бозон, который соответствует сильному взаимодействию, удерживающему кварки вместе, называется глюон. Калибровочные бозоны для слабых сил имеют менее интересное название – они называются просто слабые бозоны.

Калибровочный принцип и есть та "красивая математическая идея", отмеченная в главе 3, которая была открыта Германом Вейлем в его неудавшейся попытке по объединению гравитации и электромагнетизма в 1918. Вейль был одним из самых глубоких математиков, когда-либо размышлявших над уравнениями физики, и именно он понял, что структура теории Максвелла полностью объясняется калибровочными силами. В 1950х некоторые люди поинтересовались, а не могут ли и другие теории поля быть сконструированы с использованием калибровочного принципа. Оказалось, что это может быть сделано на основе симметрий, включающих различные виды элементарных частиц. Эти теории теперь называются теориями Янга-Миллса в честь двух их изобретателей.[3] Сначала никто не знал, что делать с этими новыми теориями. Новые силы, которые они описывали, должны были иметь бесконечную область распространения подобно электромагнетизму. Физики знали, что каждая из двух ядерных сил имеет короткую область распространения, так что, казалось, что они не могут быть описаны калибровочной теорией.

Что делает теоретическую физику в той же степени искусством, как и наукой, так это то, что лучшие теоретики имеют интуитивное шестое чувство о том, какие результаты могут быть проигнорированы. Таким образом, в начале 1960х Шелдон Глэшоу, тогда постдок (Постдок – разновидность стажерства, временная исследовательская позиция (от года до нескольких лет), предоставляемая западными институтами для обладателей докторской (PhD) степени. – (прим. перев.)) в Институте Нильса Бора, предположил, что слабая сила на самом деле описывается калибровочной теорией. Он просто постулировал, что некий неизвестный механизм ограничивает область распространения слабой силы. Если эта проблема области распространения могла бы быть решена, то слабая сила могла бы быть объединена с электромагнетизмом. Но все еще стояла глобальная проблема: как вы могли бы объединить силы, которые проявляются столь различным образом, как электромагнетизм и сильные и слабые ядерные силы?

Это пример общей проблемы, которая является напастью при любой попытке унификации. Явления, которые вы надеетесь объединить, различны – в противном случае не было бы ничего удивительного в их объединении. Так что даже если вы открыли некоторое скрытое единство, вам все еще надо понять, почему и как получилось, что они оказались различными.

Как мы говорили раньше, Эйнштейн нашел чудесный путь решения этой

проблемы для СТО и ОТО. Он осознал, что кажущаяся разница между явлениями не является внутренней для явлений, а происходит полностью вследствие необходимости описания явлений с точки зрения наблюдателя. Электричество и магнетизм, движение и покой, гравитация и ускорение – все они были объединены Эйнштейном таким способом. Различия, которые наблюдатели ощущают между ними, зависят от обстоятельств, которые отражают только точку зрения наблюдателей.

В 1960х было предложено другое решение для этой общей проблемы: различия между объединяемыми явлениями зависят от обстоятельств, но не только от точки зрения отдельных наблюдателей. Вместо этого физики сделали то, что, на первый взгляд, кажется элементарным наблюдением: Законы могут иметь симметрию, которая не соответствует всем особенностям мира, к которому они применяются.

Позвольте мне сначала проиллюстрировать это с помощью наших социальных законов. Наши законы применяются одинаково ко всем людям. Мы можем расценить это как симметрию законов. Замените одну персону на любую другую, и вы не измените законов, которым они должны подчиняться. Все должны платить налоги, все не должны превышать лимит скорости. Но это равенство или симметрия перед законом не нуждается и не требует того, чтобы наши обстоятельства были одинаковыми. Некоторые из нас богаче других. Не все из нас имеют автомобили, а среди тех, кто имеет, склонности к превышению лимита скорости могут значительно различаться.

Более того, в идеальном обществе мы все стартуем с одинаковых возможностей. К сожалению, на самом деле это не так, но если бы это было так, мы могли бы говорить о симметрии в наших стартовых возможностях. В ходе жизни эта начальная симметрия заканчивалась бы. К моменту достижения двадцатилетия мы имеем очень различающиеся возможности. Некоторые из нас имеют возможность быть концертирующими пианистами, а некоторые олимпийскими атлетами.

Мы можем описать эту дифференциацию, сказав, что начальное равенство нарушено с течением времени. Физики, которые говорят о равенстве как о симметрии, скажут, что симметрия между нами при рождении нарушена посредством ситуаций, с которыми мы сталкиваемся, и посредством выбора, который мы делаем. В некоторых случаях будет тяжело предсказать способ, по которому симметрия будет нарушена. Мы знаем, что она должна нарушиться, но, глядя на полный младенцев детский сад, мы очень затруднимся предсказать, как это произойдет. В подобных случаях физики говорят, что симметрия спонтанно нарушена. Под этим мы понимаем, что необходимо, чтобы симметрия нарушилась, но точный способ, по которому она нарушается, в высшей степени зависит от обстоятельств. Спонтанное нарушение симметрии является вторым великим принципом, который лежит в основе стандартной модели физики частиц.

Есть и другой пример из человеческой жизни. Как член профессорско-преподавательского состава я иногда имел возможность прийти на встречу с новыми студентами. Наблюдая за ними на встречах друг с другом, я, случалось, видел, что в последующие годы некоторые становились друзьями, некоторые любовниками, а некоторые даже женились. В тот первый момент, когда они сталкивались друг с другом как чужие люди, в помещении наблюдалось много симметрии, многие возможные связи и дружеские союзы могли бы быть придуманы в этой группе. Но симметрия с необходимостью должны быть нарушена, так как настоящие человеческие взаимоотношения вырабатываются из намного большего пространства возможных взаимосвязей. Это тоже пример спонтанного нарушения симметрии.

Почти вся структура мира, как социального, так и физического, является следствием требования, что мир в его реальности нарушает симметрии, присутствующие в пространстве возможностей. Важное свойство этого требования заключается во взаимообмене между симметрией и стабильностью. Симметричная ситуация, в которой мы все являемся потенциальными друзьями и романтическими партнерами, нестабильна. В реальности мы должны сделать выбор, и это приводит к большей стабильности. Мы меняем нестабильную свободу потенциальных возможностей на стабильное ощущение реальности.

То же самое верно и в физике. Общим примером из физики является карандаш, балансирующий на своем острие. Это симметричное состояние, в котором, пока он балансирует на своем острие, все направления (падения) столь же хороши, как и любые другие. Но это состояние нестабильно. Когда карандаш падает, что неизбежно должно произойти, он упадет хаотически в том или ином направлении, нарушив симметрию. Но, раз уж он упал, состояние стало стабильным, но больше оно не проявляет симметрии – хотя симметрия все еще здесь, в лежащих в основании законах. Законы описывают только пространство того, что может произойти; реальный мир управляется теми же законами, включающими выбор одной реализации из множества возможностей.

Этот механизм спонтанного нарушения симметрии можно применить к симметриям между частицами в природе. Когда с симметриями происходит то, что из калибровочного принципа возникают силы природы, это приводит к различию в их свойствах. Силы становятся различимыми; они могут иметь различные области распространения и различные величины. Перед нарушением симметрии все четыре фундаментальные силы имели бесконечную область распространения, как у электромагнетизма, но после нарушения симметрии некоторые из них стали конечными, подобно двум ядерным силам. Как отмечалось, это одно из самых важных открытий физики двадцатого века, поскольку вместе с калибровочным принципом оно позволяет нам объединить фундаментальные силы, которые кажутся несоизмеримыми.

Идея объединения спонтанного нарушения симметрии с калибровочным принципом была придумана Франсуа Энглером и Робертом Броутом в Брюсселе в 1962 и, независимо, несколькими месяцами позже Петером Хиггсом из Эдинбургского университета. Ее стоило бы назвать ЭБХ-феноменом, но, к сожалению, обычно ее называют только феноменом Хиггса. (Это один из многочисленных примеров, в которых нечто в науке получает название по последней персоне, которая это нечто открыла, вместо того, чтобы по первой). Эти трое также показали, что имеется частица, чье существование является следствием спонтанного нарушения симметрии. Она называется Хиггсовым бозоном.

Несколькими годами позже, в 1967, Стивен Вайнберг и пакистанский физик Абдус Салам независимо открыли, что комбинация калибровочного принципа и спонтанного нарушения симметрии может быть использована для конструирования конкретной теории, которая объединяет электромагнитные и слабые ядерные силы. Теория носит их имя: модель Вайнберга-Салама электрослабых сил. Это была определенно унификация со следствиями, которую надо было отпраздновать; она быстро привела к предсказаниям новых явлений, которые были успешно проверены. Она предсказала, например, что должны существовать частицы – аналоги фотону, который переносит электромагнитное взаимодействие, – для передачи слабого ядерного взаимодействия. Таких частиц три с названиями W+, W- и Z. Все три были найдены и проявили предсказанные свойства.

Использование спонтанного нарушения симметрии в фундаментальной теории имело чрезвычайные последствия не только для законов природы, но и для более общего вопроса о том, что из себя представляют законы природы; до этого мы думали, что свойства элементарных частиц определяются непосредственно вечно заданными законами природы. Но в теории со спонтанным нарушением симметрии был введен новый элемент, который заключается в том, что свойства элементарных частиц зависят отчасти от истории и от окружения. Симметрия может нарушиться различными способами в зависимости от условий вроде плотности и температуры. Более общо, свойства элементарных частиц зависят не только от уравнений теории, но и от того, какое решение этих уравнений имеет отношение к нашей вселенной. Это сигнализирует об отходе от обычного редукционизма, в соответствии с которым свойства элементарных частиц вечны и устанавливаются абсолютным законом. Это открывает возможность, что многие – или даже все – свойства элементарных частиц зависят от обстоятельств и от того, какое решение законов выбрано в нашем регионе вселенной или в нашу отдельную эру. Они могут отличаться в различных регионах.[4] Они могут даже изменяться во времени.

В спонтанном нарушении симметрии имеется величина, которая сигнализирует, что симметрия нарушена и каким образом. Эта величина обычно является полем, названным полем Хиггса. Модель Вайнберга-Салама требует, чтоб поле Хиггса существовало и чтобы оно проявлялось как новая элементарная частица, именуемая Хиггсовым бозоном, который переносит силы, ассоциирующиеся с полем Хиггса. Из всех предсказаний, требуемых унификацией электромагнитных и слабых сил, только это предсказание еще не было подтверждено на опыте. Одна трудность в том, что теория не позволяет нам точно предсказать массу Хиггсова бозона, она является одной из свободных констант, которые теория требует задать извне. Было много экспериментов, направленных на поиски Хиггсова бозона, но все, что мы знаем, это что, если он существует, его масса должна быть больше, чем примерно 120 масс протона. Одной из главных целей будущих экспериментов на ускорителях является ее поиск.

В начале 1970х калибровочный принцип был применен к сильному ядерному взаимодействию, которое связывает кварки, и было найдено, что калибровочное поле также отвечает и за это. Итоговая теория названа квантовой хромодинамикой, или КХД для краткости. (Слово хромо от греческого "цвет" указывает на образное обозначение, использованное для указания на факт, что кварки бывают трех версий, которые для красоты названы цветами). КХД тоже выдержала строгий экспериментальный тест. Вместе с моделью Вайнберга-Салама она составляет основу стандартной модели физики элементарных частиц.

Открытие, что все три силы являются выражениями единого объединяющего принципа – калибровочного принципа, – является глубочайшим достижением теоретической физики частиц на сегодняшний момент. Сделавшие это люди являются настоящими героями науки. Стандартная модель является результатом десятилетий тяжелого, часто разочаровывающего экспериментального и теоретического труда сотен людей. Она была завершена в 1973 и поддержана за тридцать лет широким массивом экспериментов. Мы, физики, справедливо гордимся ею. Но рассмотрим, что произошло дальше. Все три силы теперь понимаются как выражения одного и того же принципа, и было очевидно, что они должны быть объединены. Чтобы объединить все частицы, однако, вам нужно больше симметрии, чем они все содержат. Тогда вы применяете калибровочный принцип, приводящий к трем силам. Чтобы различить все частицы и силы, вы устанавливаете их так, что любая конфигурация системы, в которой реализована симметрия, является нестабильной, тогда как стабильные конфигурации асимметричны. Это нетрудно сделать, поскольку, как я обсуждал, симметричные ситуации часто нестабильны в природе. Таким образом, симметрия, включающая все частицы вместе, будет спонтанно нарушена. Это может быть сделано так, что в итоге три силы окажутся именно с теми свойствами, с которыми они наблюдаются.

Идея великого объединения была не только в том, чтобы свести все силы вместе, но и в том, чтобы придумать симметрию, которая переводит кварки (частицы, управляемые сильным взаимодействием) в лептоны (частицы, управляемые электрослабым взаимодействием), поэтому объединение двух основных видов частиц приводит только к одному виду частиц и к одному калибровочному полю. Простейший кандидат на это великое объединение известен как симметрия SU(5). Название кодирует пять видов частиц, трансформирующихся друг в друга при симметрии: три цветных кварка каждого вида и два лептона (электрон и его нейтрино). SU(5) не только объединяет кварки и лептоны, она делает это с беспримерной элегантностью, лаконично объясняя все, что делалось в стандартной модели, и делая необходимым многое из того, что ранее было случайным. SU(5) объясняет все предсказания стандартной модели и, даже лучше, делает некоторые новые предсказания.

Одно из этих новых предсказаний заключалось в том, что должны существовать процессы, посредством которых кварки могут видоизмениться в электроны и нейтрино, поскольку в SU(5) кварки, электроны и нейтрино являются только различными проявлениями одного и того же основополагающего вида частиц. Как мы видели, когда две вещи объединяются, должны проявиться новые физические процессы, путем которых они могут переходить друг в друга. SU(5) на самом деле предсказывает такие процессы, которые сходны с радиоактивным распадом. Это чудесное предсказание, характеризующее великое объединение. Это требуется теорией и характерно только для нее.

Распад кварка на электроны и нейтрино должен был бы иметь наблюдаемые последствия. Протон, содержащий этот кварк, больше не был бы протоном; он распался бы на более простые части. Таким образом, протоны больше не являются стабильными частицами – они подвергаются разновидности радиоактивного распада. Конечно, если бы это происходило очень часто, наш мир распался бы, так как все стабильное в нем состоит из протонов. Так что, если протоны распадаются, темп распада должен быть очень малым. И это именно то, что предсказывает теория: темп менее одного такого распада каждые 1033 лет.

Но даже если этот эффект экстремально редок, он в пределах достижимости осуществимого эксперимента, поскольку в мире имеется гигантское количество протонов. Итак, в SU(5) мы имели лучший вид унифицирующей теории, в котором были удивительные следствия, которые не противоречили тому, что мы знаем и можем немедленно подтвердить. Мы могли бы компенсировать экстремальную редкость распада протона, построив гигантскую емкость и наполнив ее ультрачистой водой, чтобы был шанс, что где-то в емкости протон распадется не реже раза в год. Вы должны были бы защитить емкость от космических лучей, поскольку эти лучи, постоянно бомбардирующие Землю, могут разорвать протон на части. Затем, поскольку распад протона производит много энергии, все, что вам было бы нужно, это окружить емкость детекторами и ждать. Средства были выделены, и гигантская емкость была построена в шахтах глубоко под землей. Результат с нетерпением ожидался.

После примерно двадцати пяти лет мы все еще ждали. Ни один протон не распался. Мы ждали достаточно долго, чтобы понять, что унификация SU(5) не верна. Это прекрасная идея, но, кажется, из тех, что природа не приняла.

Недавно я случайно встретил друга из аспирантуры – Эдварда Фархи, который с тех пор стал директором Центра теоретической физики в Массачусетском технологическом институте. Мы не имели серьезного общения, вероятно, двадцать лет, но мы нашли, что имеем очень много, о чем поговорить. Мы оба наблюдали за тем, что происходило и что не происходило в физике частиц за двадцать пять лет с тех пор, как мы получили наши степени доктора философии. Эдди сделал важный вклад в теорию частиц, но сейчас работает, большей частью, в быстро развивающейся области квантовых компьютеров. Я спросил его, почему, и он сказал, что в сфере квантовых компьютеров, в отличие от физики частиц, мы знаем, каковы принципы, мы можем выработать следствия, и мы можем провести эксперименты, чтобы проверить сделанные нами предсказания. Он и я искали место приложения сил, когда физика частиц начала переставать быть быстро развивающейся областью, что в свое время повлекло нас в аспирантуру. Мы оба пришли к заключению, что поворотным пунктом было открытие того, что протон не распадается за то время, которое предсказано теорией великого объединения SU(5). "Я готов был побиться об заклад на свою жизнь – ладно, не на свою жизнь, но ты знаешь, что я имею в виду, – что протон должен распадаться," – так он это определил, – "SU(5) была такой красивой теорией, все встраивалось в нее совершенным образом, – и она оказалась не верной."

В самом деле, было тяжело переоценить последствия отрицательного результата. SU(5) была самым элегантным из вообразимых способов объединения кварков с лептонами, и она приводила к кодификации свойств стандартной модели в простых терминах. Даже после двадцати пяти лет я все еще нахожу ошеломляющим тот факт, что SU(5) не работает.

Не то, чтобы это было тяжело для нас, теоретиков, выбраться из текущей неудачи. Вы можете просто добавить в теорию несколько симметрий и частиц, так что там будет больше констант для подгонки. С большим количеством подгоночных констант вы можете устроить распад протона столь редким, как вам нравится. Так что вы можете легко защитить теорию от экспериментальной неудачи.

Как упоминалось, ущерб уже нанесен. Мы потеряли шанс наблюдения поразительного и однозначного предсказания глубокой новой идеи. В его простейшей версии великое объединение сделало предсказание относительно темпа распада протона. Если великое объединение верно, но более сложно, так что темп распада протона может быть подогнан ко всему, что нам нравится, теория теряет способность к объяснению. Надежда была в том, что объединение сможет оценить величины констант в стандартной модели. Вместо этого великое объединение, если оно имеет силу, вводит новые константы, которые должны быть заданы руками, чтобы скрыть эффекты, которые не согласуются с экспериментом.

Мы видим здесь иллюстрацию общего урока, описанного ранее. Когда вы объединяете различные частицы и силы, вы рискуете внести в мир нестабильности. Это происходит потому, что появляются новые взаимодействия, через которые объединенные частицы могут преобразовываться друг в друга. Нет способа избежать этих нестабильностей; на самом деле, такие процессы сами по себе являются доказательством объединения. Единственный вопрос в том, работаем ли мы с хорошим случаем – подобным стандартной модели, которая делает недвусмысленные предсказания, которые быстро подтверждаются, – или с неподходящим случаем, в котором мы играем с теорией, чтобы скрыть последствия. Такова дилемма современных теорий унификации.