"Доктор занимательных наук" - читать интересную книгу автора (Мишкевич Г.И.)Г.И. МИШКЕВИЧ Жизнь и творчество Якова Исидоровича Перельмана Издательство «ЗНАНИЕ» Москва 1986 В.И. Ленин Глава 4. Написавший библиотеку «Занимательная геометрия» Наивысшего расцвета талант и литературная деятельность Перельмана достигли после Великого Октября. Советская власть предоставила ему такие возможности для творчества, о которых ранее он лишь мечтал. Именно с 1918 по 1940 год были написаны основные его произведения. После выхода в свет «Занимательной физики» прошло почти двенадцать лет. Многие из последующих книг этой серии вышли в свет в 20…30-х годах в ленинградском издательстве «Время» [25] , с которым был тесно связан М. Горький. Сохранились его письма директору издательства и по поводу выпуска книг занимательной серии. В письме от 12 ноября 1926 года содержится высокая оценка их. В другом письме - от 15 декабря того же года - писатель, сетуя на задержку выхода книг, писал: «Очень огорчен, что «Занимательная наука» встретила препятствие дальнейшему росту. Это - глупо и грустно». Можно не сомневаться, что благодаря вмешательству М. Горького издание серии книг не пресеклось. Серию продолжила «Занимательная геометрия», вышедшая в свет в 1925 году (выдержала 11 изданий). Параллельно шла деятельная работа и над «Занимательной арифметикой». Когда обе рукописи вчерне были готовы, Перельман не мог не задуматься об их судьбе. В его памяти всплыл разговор с Сойкиным, которому он принес рукопись «Занимательной физики». Тогда, как мы помним, Сойкин выразил опасение, как отреагируют ученые-физики и педагоги на выход книги. Примерно о том же думал теперь сам Перельман: ведь его «Занимательной геометрии» и «Занимательной арифметике» будут противостоять учебники таких корифеев педагогики, как А.Ф. Малинин и К.П. Буренин, чье руководство по арифметике выдержало более 25 изданий, или А.П. Киселева с 30 изданиями курса элементарной геометрии. Их пособия были допущены в качестве официальных учебников, по которым учились миллионы школьников. И опять невольно на ум пришли сравнения. Вот задача из учебника геометрии. Ложка оливкового масла (20 граммов) вылита на воду. Образовалось пятно поперечником 30 метров. Требуется вычислить толщину пленки. Решается эта задача так: измеряется площадь пятна, затем определяется объем масла и, наконец, высчитывается толщина масляной пленки. При этом используются формула определения площади круга, данные о плотности масла и т.д. Но ведь об этом же можно рассказать и по-другому, например так. На поверхность воды выливается та же ложка масла. Пятно около 30 метров в диаметре в тысячу раз больше длины и во столько же раз больше ширины ложки. Стало быть, толщина пленки в миллион раз меньше толщины слоя масла в ложке. Право же, решение совсем не трудоемкое, более наглядное, а по точности не уступающее каноническому. Другой пример - задача из учебника арифметики: «Как умножить 3 275 на 537? Это значит, что надобно взять 3 275 слагаемым 537 раз, а для этого можно взять его слагаемым сперва 7 раз, потом еще 30 раз и наконец 500 раз, и полученные суммы сложить. Иначе говоря, можно 3 275 умножить сперва на 7, потом на 30, наконец на 500, и полученные произведения сложить». Только тупой зубрежкой можно запомнить это правило умножения. Что в нем наглядного? Ничего! То же можно сказать и о задачах с купцами и их аршинами, цыбиках чая, бассейнах с трубами… Но нельзя ли попытаться найти иные - занимательные - способы решения? И появляется задача-новелла, в которой присутствуют те же аршины, но в какой ипостаси? При ревизии одного из магазинов в торговой книге важная запись оказалась залитой чернилами и имела такой вид: «За… кусков мадеполама по 49 руб. 36 коп, за кусок выручили… 7 руб. 28 коп.». Ни числа проданных кусков, ни вырученной суммы разобрать не было возможности - кляксы закрыли существенную часть записи. Способов прочтения скрытых или угасших текстов, которыми широко пользуются нынешние криминалисты и реставраторы, в те времена не существовало. Да они и не понадобились бы Перельману. Живым языком «следователя»-популяризатора он восстанавливает пропуски и весело, непринужденно решает задачу. В таком ключе написана и «Занимательная геометрия». В предисловии к ее первому изданию говорилось: «Автор прежде всего отделяет геометрию от классной доски, выводит ее из стен школьной комнаты на вольный воздух, в лес, в поле, к реке, на дорогу, чтобы под открытым небом отдаться непринужденным геометрическим занятиям без циркуля и линейки». (Как не вспомнить такие же внеклассные занятия, которые вел учитель Белостокского реального училища Е.Н. Бунимович?) Обратимся к содержанию книги. Часть первая - «Геометрия на вольном воздухе (в лесу, в поле, у реки, на дороге)». Часть вторая - «Между делом и шуткой в геометрии (геометрия впотьмах, геометрия и экономика, новое и старое о круге)». Эпиграфом к первой части служит высказывание Альберта Эйнштейна: «Первые основы геометрии должны быть заложены не в школьной комнате, а на вольном воздухе. Покажите мальчику, как измеряется площадь луга, обратите его внимание на высоту колокольни, на длину тени, отбрасываемой ею, на соответствующее положение Солнца - и он гораздо быстрее, правильнее и при этом с большим интересом усвоит математическое соотношение, чем когда понятие измерения углов, а то и какой-либо тригонометрической функции внедряются в его голову с помощью слов и чертежа на доске». Следуя этому совету, Перельман написал поистине веселую «Занимательную геометрию». Книга начинается с воспоминаний далекого детства о том, как в роще под Белостоком лесничий с помощью простой дощечки молниеносно определял высоту деревьев. «Я был тогда очень молод, и такой способ измерения, когда человек определяет высоту дерева, не срубая его и не взбираясь на верхушку, являлся в моих глазах чем-то вроде маленького чуда». Тут же историческая параллель: «Самый легкий и самый древний способ - это без сомнения тот, которым греческий мудрец Фалес за шесть веков до нашей эры определил в Египте высоту пирамиды. Он воспользовался ее тенью. Фалес, гласит предание, избрал день и час, когда длина собственной его тени равнялась его росту; в этот момент высота пирамиды должна также равняться длине отбрасываемой ею тени». В книге множество примеров подобных измерений высоты зданий, деревьев, их толщины, ширины реки и скорости течения в ней. В задачах типа «Где сходятся рельсы?» или «Далеко ли светит маяк?» разбираются способы определения расстояний до удаленных предметов, не пользуясь при этом никакими приборами, а применяя лишь такие простейшие предметы, как спичка, указательный палец, почтовая карточка и тому подобное. В главе «Геометрия Робинзонов» можно узнать о том, как вычислить географические координаты необитаемого острова, описанного Даниэлем Дефо, или жюльверновского «Таинственного острова». Немало в книге и шуточных задач: «Каков объем бочки, в которой жил Диоген?», «Какова длина нити Ариадны?», «Какой вес и размер имела бы монета достоинством в миллион рублей?» (Оказывается, ее поперечник составил бы 3,3 метра, а масса - 20 тонн!). В другой главе - задача, навеянная Н.В. Гоголем: «Звезды горят и светят над миром и все разом отдаются в Днепре. Всех их держит Днепр в лоне своем: ни одна не убежит от него, разве погаснет на небе». С позиций геометра исследуется этот поэтический образ: нет, не все звезды разом отразятся в Днепре, а только половина их числа на небе… Мальчик из романа Майн Рида «На дне трюма» оказался в «экстремальных условиях» - в недрах судна среди бочек и тюков. Мешок с сухарями он нашел, а с водой обстояло хуже: бочку-то он нашарил, но сколько в вей воды - неизвестно. Однако юный герой не растерялся. Зная геометрию, он даже в кромешной темноте вычислил количество воды (поверка этого способа, приведенная Перельманом, для любителей математики, заняла три страницы математических формул). Герой романа Марка Твена «Простаки за границей» очутился в незнакомом номере гостиницы и стал в темноте блуждать по нему, отыскивая свои вещи. Он прошагал… 47 миль (!), пока не набрел на вещи. Яков Исидорович, построив график блужданий незадачливого постояльца, в заключение отметил, что люди, бродящие без компаса в степи в метель или в тумане, обычно ходят по круговой, хотя полагают, что идут прямо (для подтверждения приводятся примеры блуждания по снегу героев романа Жюля Верна «Приключения капитана Гаттераса» и рассказа Л.Н. Толстого «Хозяин и работник»). Из романа Джека Лондона «Маленькая хозяйка большого дома» Перельман извлек описание способа квадратуры круга. Интересно трактуется геометрия подобия. Когда-то на Мадагаскаре водились огромные страусы - эпиорнисы, клавшие яйца длиной 28 сантиметров. Куриное яйцо имеет в длину 5 сантиметров. Скольким куриным яйцам соответствует по объему одно яйцо-гигант? В книге Джонатана Свифта «Путешествия Гулливера» Яков Исидорович отыскал ряд геометрических задач, в том числе о размерах лилипутов и великанов. Свифт положил в основу сравнения их роста простое линейное соотношение, основанное на числе 12, то есть на соотношении дюйма и английского фута. Поэтому он посчитал паек Гулливера равным 12 пайкам лилипута. Но писатель должен был принять во внимание не линейную, а кубическую зависимость. И тогда, говорит Перельман, результат получился бы иной: обед Гулливера - это не 12, а 12 Ч 12 Ч 12 = 1 728 обедов лилипута. Книга из библиотеки великанов в 1 728 раз больше, ее длина превышает 7 метров, а масса - 3 тонны! Главу «Геометрическая экономия» Перельман начинает выдержкой из рассказа Л.Н. Толстого «Много ли человеку земли нужно». Герой рассказа зажиточный крестьянин Пахом торгует у башкирского старшины землю: «- А какая цена будет? - Цена у нас одна: тысяча рублей за день». Иными словами, сколько за день земли обойдешь, вся твоя, за тысячу рублей. Едва занялась заря, Пахом отправился в путь. А откуда он начал идти, там старшина положил свою лисью шапку, а в ней - пахомова тысяча. Прибежал Пахом к шапке с последними закатными лучами Солнца и упал бездыханный… Этот рассказ, полный глубокого социального и нравственного смысла, Перельман анализирует с точки зрения геометра. Сколько же земли отмерял Пахом за день безостановочного хода? В рассказе Л.Н. Толстого содержатся все необходимые исходные данные для подсчета, и Перельман уточняет: «Л.Н. Толстой несомненно имел перед своими глазами чертеж, когда писал свой рассказ». Оказывается, Пахом успел обойти обширный участок - около 8 000 десятин, однако желанной землицы так и не обрел… Продолжая «землемерную» тему, Яков Исидорович переносит читателя в глубокую древность. Дидона, дочь Тирского царя, бежала в Африку и высадилась со своими соплеменниками на ее северном берегу. Здесь она купила у нумидийского царя столько земли, «сколько заняла воловья шкура». Когда сделка была совершена, хитрая Дидона разрезала шкуру на множество тончайших ремешков, потом связала их и охватила участок земли. Читателю предлагается вычислить, какова площадь участка при условии, что поверхность целой шкуры равна 4 квадратным метрам. Расчет покажет, что связанными ремешками Дидона объяла ни мало ни много - 1,3 квадратного километра земли! На этом «воловьем» участке, по преданию, соорудили крепость Карфаген. Есть в книге и другие сюжеты, подсказанные художественными произведениями, в частности легендой о могильных холмах, насыпанных руками воинов: Математик Перельман за поэтической строкой пушкинского «Скупого рыцаря» увидел несколько иную картину: пусть хоть сто тысяч воинов насыпят горстями «гордый холм» - он возвысится всего на полтора метра. Однако «следствие» о холме доводится до конца: даже семьсот тысяч воинов Аттилы могли бы насыпать холм всего лишь в 4,6 метра высотой. Цель, сформулированная автором в предисловии к «Занимательной геометрии», - «сделать геометрию привлекательной, внушить охоту и воспитать вкус к ее изучению» - великолепно достигнута. «Сухая» школьная премудрость, показанная в книге в необычном свете, благодаря таланту автора, стала действительно привлекательной. |
||
|