"ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ" - читать интересную книгу автора (Клоксин У, Меллиш К)
2.4. Равенство и установление соответствия
В Прологе существует особый предикат равенство, являющийся инфиксным оператором, обозначаемым литерой '='. Когда делается попытка доказать согласованность с базой данных целевого утверждения
?- X = Y.
(произносится X равно Y), Пролог пытается установить соответствие между X и Y; целевое утверждение «доказуемо», если такое соответствие имеется. Это действие можно представить себе как попытку сделать X и Y равными. Предикат равенства является встроенным, т. е. он уже определен в Пролог-системе. Предикат равенства работает так, словно определен следующий факт: X = X.
Внутри всякого утверждения X всегда равно X, и это свойство использовано нами при определении предиката равенства.
При согласовании с базой данных цели вида X = Y, где X и Y – любые термы, в которых могут содержаться неконкретизированные переменные, действуют следующие правила:
• если X представляет собой неконкретизированную переменную, а переменная Y конкретизирована (какое именно значение ей дано, неважно), то X и Y равны. Кроме того, X станет конкретизированной – ей будет дано то же значение, что и Y. Например, следующий вопрос приведет к тому, что X будет присвоено значение в виде структуры: ехать(клерк, велосипед):
?- ехать(клерк, велосипед) = X.
• целые числа и атомы всегда равны самим себе. Например, попытки согласовать следующие целевые утверждения дадут результаты, показанные справа:
полицейский = полицейский /* верно */
бумага = карандаш /* ложно */
1066=1066 /* верно */
1206=1583 /* ложно */
• Две структуры равны, если они имеют один и тот же функтор и одинаковое число аргументов, причем все соответствующие аргументы равны. Например, при согласовании следующего целевого утверждения X будет присвоено конкретное значение велосипед:
ехать(клерк,велосипед) = ехать(клерк,Х).
Структуры могут быть вложены одна в другую на любую глубину. Если такие вложенные структуры проверяются на равенство, проверка займет больше времени, поскольку необходимо проверить все структуры. Попытка согласовать следующую цель:
a(b,C,d(e,F,g(h,i,J)))=a(B,c,d(E,f,g(H,i,j))).
будет успешной, а переменные В, С, F, Е, J будут конкретизированы, им будут присвоены соответственно значения b, с, f, e, j. Что произойдет, если мы попытаемся приравнять две неконкретизированные переменные? Это специальный случай первого из вышеприведенных правил. Так, цель будет согласована и две переменные станут сцепленными. Если две переменные сцеплены, то при конкретизации одной из них второй переменной будет автоматически присвоено то же самое конкретное значение, что и первой. Таким образом, в следующем правиле второй аргумент будет конкретизирован так же, как первый:
ничего_не_делать(Х,Y):- Х = Y.
Целевое утверждение X=Y всегда верно (т. е. согласуется с базой данных), если один из аргументов неконкретизирован. Более простой способ записи такого правила заключается в использовании того факта, что переменная равна самой себе:
ничего_не_делать(Х,Х).
Пролог предоставляет также предикат '\=' соответствующий не равно. Целевое утверждение Х\=Y верно в тех случаях, когда не доказуемо утверждение X=Y, и наоборот. Таким образом, Х\=Y означает, что X не может быть сделано равным Y.
Упражнение 2.1. Скажите, верны ли следующие целевые утверждения, какие переменные будут конкретизированы и какие им будут даны значения: