"Interfacing the IBM PC parallel printer port" - читать интересную книгу автора (Stewart Z.) when I created a cable like this (actually, a DB25 jumper box usually sold
for RS-232 jumpering, along with straight through 25 line DB-25 cables), I used 8 10K resistors between the corresponding Data lines, to limit current in this case. (Actually, a DIP resistor pack fit perfectly on the PC board inside the DB-25 jumper box). The resistors are large enough to keep TTL output from overstressing another one if both enabled, but when one is disabled and the other enabled, the resistors are low enough to allow the TTL output to drive a TTL input well enough. Mode 3A: 8 bits, using Open Collector Control Outputs as inputs This version uses 4 control outputs as inputs, plus 4 status inputs. Side 1 Pin dir Pin Side 2 connection ------ --- --- --- ------ ---------- D0 2 =>* 1 C0- inverted D1 3 =>* 14 C1- inverted D2 4 =>* 16 C2+ direct D3 5 =>* 17 C3- inverted D4 6 => 13 S4+ direct D5 7 => 12 S5+ direct D6 8 => 10 S6+ direct D7 9 => 11 S7- inverted C0- 1 <=* 2 D0 inverted C1- 14 <=* 3 D1 inverted C3- 17 <=* 5 D3 inverted S4+ 13 <= 6 D4 direct S5+ 12 <= 7 D5 direct S6+ 10 <= 8 D6 direct S7- 11 <= 9 D7 inverted Gnd 25 === 25 Gnd (ground) * Note: Control outputs used as inputs must be programmed high: C0, C1, C3 = 0 and C2 = 1 Mode 3B: 8 bits, using Open Collector Control Outputs as inputs This version uses 3 control outputs as inputs, plus 5 status inputs; remaining control output is bidirectional - if left high by default, either side can pull low (remember inverted logic). Side 1 Pin dir Pin Side 2 connection ------ --- --- --- ------ ---------- D0 2 =>* 1 C0- inverted D1 3 =>* 14 C1- inverted D2 4 =>* 16 C2+ direct D3 5 =>* 15 S3+ direct D4 6 => 13 S4+ direct D5 7 => 12 S5+ direct |
|
|