Возникновение жизни на Земле

Вопрос о том, когда на Земле появилась жизнь, всегда волновал не только ученых, но и всех людей. Ответы на него
содержатся в священных писаниях
практически всех религий. Хотя точного научного ответа на него до сих пор нет, некоторые факты позволяют высказать более или менее обоснованные гипотезы. В Гренландии исследователями был найден образец горной породы
с крошечным вкраплением углерода. Возраст образца более 3,8 млрд лет. Источником углерода, скорее всего, было какое-то органическое вещество – за такое время оно полностью утратило свою структуру. Ученые полагают, что этот комочек углерода может быть самым древним следом жизни на Земле.

Как выглядела первобытная Земля?
Перенесемся на 4 млрд лет назад. Атмосфера не содержит свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счет сильно различаются. Об условиях на Земле того времени могли бы свидетельствовать горные породы, но они давно разрушились в результате геологических процессов и перемещений земной коры.
В этой статье мы кратко расскажем о нескольких гипотезах возникновения жизни, отражающих современные научные представления. Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале ее эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли эти молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия?
Согласно одной из гипотез жизнь началась в кусочке льда. Хотя многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима. При низкой температуре все химические соединения более стабильны и поэтому могут накапливаться в больших количествах, чем при высокой температуре. Занесенные из космоса осколки метеоритов, выбросы из гидротермальных источников и химические реакции, происходящие при электрических разрядах в атмосфере, были источниками аммиака и таких органических соединений, как формальдегид и цианид. Попадая в воду Мирового океана, они замерзали вместе с ней. В ледяной толще молекулы органических веществ тесно сближались и вступали во взаимодействия, которые приводили к образованию глицина и других аминокислот. Океан был покрыт льдом, который защищал вновь образовавшиеся соединения от разрушения под действием ультрафиолетового излучения. Этот ледяной мир мог растаять, например, при падении на планету огромного метеорита (рис. 1).

"Возникновение жизни на Земле" - читать интересную книгу автора (Прохоров А.Л.)

Возникновение жизни на Земле
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Hазад

Рис. 1.
Океан был покрыт льдом, который служил защитой от сильного ультрафиолетового излучения. В ледяной толще молекулы органических соединений могли тесно сближаться и взаимодействовать друг с другом с образованием новых, более сложных соединений
Чарлз Дарвин и его современники полагали, что жизнь могла возникнуть в водоеме. Этой точки зрения многие ученые придерживаются и в настоящее время. В замкнутом и сравнительно небольшом водоеме органические вещества, приносимые впадающими в него водами, могли накапливаться в необходимых количествах. Затем эти соединения еще больше концентрировались на внутренних поверхностях слоистых минералов, которые могли быть катализаторами реакций. Например, две молекулы фосфатальдегида, встретившиеся на поверхности минерала, реагировали между собой с образованием фосфорилированной углеводной молекулы – возможного предшественника рибонуклеиновой кислоты (рис. 2).

Рис. 2.
Вода, а вместе с ней различные химические соединения, поступающие из ледников, вулканов, гейзеров и осколков метеоритов, скапливаются в неглубоких водоемах
А может быть, жизнь возникла в районах вулканической деятельности? Непосредственно после образования Земля представляла собой огнедышащий шар магмы. При извержениях вулканов и с газами, высвобождавшимися из расплавленной магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул. Так, молекулы угарного газа, оказавшись на поверхности минерала пирита, обладающего каталитическими свойствами, могли реагировать с соединениями, имевшими метильные группы, и образовывать уксусную кислоту, из которой затем синтезировались другие органические соединения (рис. 3).

Рис. 3.
В местах вулканической активности при извержениях, выделении и выбросах газов из коры и магмы на земную поверхность попадали жизненно важные вещества, которые вступали в химические реакции, давая начало органическим соединениям
Впервые получить органические молекулы – аминокислоты – в лабораторных условиях, моделирующих те, что были на первобытной Земле, удалось американскому ученому Стэнли Миллеру в 1952 г. Тогда эти эксперименты стали сенсацией, и их автор получил всемирную известность. В настоящее время он продолжает заниматься исследованиями в области предбиотической (до возникновения жизни) химии в Калифорнийском университете. Установка, на которой был осуществлен первый эксперимент, представляла собой систему колб, в одной из которых можно было получить мощный электрический разряд при напряжении 100 000 В.
Миллер заполнил эту колбу природными газами – метаном, водородом и аммиаком, которые присутствовали в атмосфере первобытной Земли. В колбе, расположенной ниже, было небольшое количество воды, имитирующей океан. Электрический разряд по своей силе приближался к молнии, и Миллер ожидал, что под его действием образуются химические соединения, которые, попав затем в воду, прореагируют друг с другом и образуют более сложные молекулы.
Результат превзошел все ожидания. Выключив вечером установку и вернувшись на следующее утро, Миллер обнаружил, что вода в колбе приобрела желтоватую окраску. То, что образовалось, оказалось бульоном из аминокислот – строительных блоков белков. Таким образом этот эксперимент показал, как легко могли образоваться первичные ингредиенты живого. Всего-то и нужны были – смесь газов, маленький океан и небольшая молния.
Другие ученые склонны считать, что древняя атмосфера Земли отличалась от той, которую моделировал Миллер, и состояла, скорее всего, из углекислого газа и азота. Используя эту газовую смесь и экспериментальную установку Миллера, химики попытались получить органические соединения. Однако их концентрация в воде была такой ничтожной, как если бы растворили каплю пищевой краски в плавательном бассейне. Естественно, трудно себе представить, как могла возникнуть жизнь в таком разбавленном растворе.
Если действительно вклад земных процессов в создание запасов первичного органического вещества был столь незначителен, то откуда оно вообще взялось? Может быть, из космоса? Астероиды, кометы, метеориты и даже частицы межпланетной пыли могли нести на себе органические соединения, включая аминокислоты. Эти внеземные объекты могли обеспечить попадание в первичный океан или небольшой водоем достаточного для зарождения жизни количества органических соединений.
Последовательность и временной интервал событий, начиная от образования первичного органического вещества и кончая появлением жизни как таковой, остается и, наверное, навсегда останется загадкой, волнующей многих исследователей, равно как и вопрос, что. собственно, считать жизнью.
В настоящее время существует несколько научных определений жизни, но все они не точны. Одни из них настолько широки, что под них попадают такие неживые объекты, как огонь или кристаллы минералов. Другие – слишком узки, и в соответствии с ними мулы, не дающие потомства, не признаются живыми.
Одно из наиболее удачных определяет жизнь как самоподдерживающуюся химическую систему, способную вести себя в соответствии с законами дарвиновской эволюции. Это значит, что, во-первых, группа живых особей должна производить подобных себе потомков, которые наследуют признаки родителей. Во-вторых, в поколениях потомков должны проявляться последствия мутаций – генетических изменений, которые наследуются последующими поколениями и обуславливают популяционную изменчивость. И в-третьих, необходимо, чтобы действовала система естественного отбора, в результате которого одни особи получают преимущество перед другими и выживают в изменившихся условиях, давая потомство.
Какие же элементы системы были необходимы, чтобы у нее появились характеристики живого организма? Большое число биохимиков и молекулярных биологов считают, что необходимыми свойствами обладали молекулы РНК. РНК – рибонуклеиновые кислоты – это особенные молекулы. Одни из них могут реплицироваться, мутировать, таким образом передавая информацию, и, следовательно, они могли участвовать в естественном отборе. Правда, они не способны сами катализировать процесс репликации, хотя ученые надеются, что в недалеком будущем будет найден фрагмент РНК с такой функцией. Другие молекулы РНК задействованы в “считывании” генетической информации и передаче ее на рибосомы, где происходит синтез белковых молекул, в котором принимают участие молекулы РНК третьего типа.
Таким образом самая примитивная живая система могла быть представлена молекулами РНК, удваивающимися, подвергающимися мутациям и подверженными естественному отбору. В ходе эволюции на основе РНК возникли специализированные молекулы ДНК – хранители генетической информации – и не менее специализированные молекулы белка, взявшие на себя функции катализаторов синтеза всех известных в настоящее время биологических молекул.
В некий момент времени “живая система” из ДНК, РНК и белка нашла приют внутри мешочка, образованного липидной мембраной, и эта более защищенная от внешних воздействий структура послужила прототипом самых первых клеток, давших начало трем основным ветвям жизни, которые представлены в современном мире бактериями, археями и эукариотами. Что касается даты и последовательности появления таких первичных клеток, то это остается загадкой. Кроме того, по простым вероятностным оценкам для эволюционного перехода от органических молекул к первым организмам не хватает времени – первые простейшие организмы появились слишком внезапно.
В течение многих лет ученые полагали, что жизнь вряд ли могла возникнуть и развиваться в тот период, когда Земля постоянно подвергалась столкновениям с большими кометами и метеоритами, а завершился этот период примерно 3,8 млрд лет тому назад. Однако недавно в самых древних на Земле осадочных породах, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет. Значит, первые формы жизни могли возникнуть за миллионы лет до того, как прекратилась бомбардировка нашей планеты крупными космическими телами. Но тогда возможен и совсем другой сценарий (рис. 4).

Рис. 4.
Органическое вещество попадало на Землю из космоса вместе с метеоритами и другими внеземными объектами, бомбардировавшими планету в течение сотен миллионов лет с момента ее образования. Ныне столкновение с метеоритом – событие довольно редкое, но и сейчас из космоса вместе с межпланетным материалом на Землю продолжают поступать точно такие же соединения, как и на заре жизни
Падавшие на Землю космические объекты могли сыграть центральную роль в возникновении жизни на нашей планете, так как, по мнению ряда исследователей, клетки, подобные бактериям, могли возникнуть на другой планете и затем уже попасть на Землю вместе с астероидами. Одно из свидетельств в пользу теории внеземного происхождения жизни было обнаружено внутри метеорита, по форме напоминающего картофелину и названного ALH84001. Первоначально этот метеорит был частичкой марсианской коры, которая затем была выброшена в космос в результате взрыва при столкновении огромного астероида с поверхностью Марса, происшедшего около 16 млн лет назад. А 13 тыс. лет назад после длительного путешествия в пределах Солнечной системы этот осколок марсианской породы в виде метеорита приземлился в Антарктике, где и был недавно обнаружен. При детальном исследовании метеорита внутри него были обнаружены палочковидные структуры, напоминающие по форме окаменелые бактерии, что дало повод для бурных научных споров о возможности жизни в глубине марсианской коры. Разрешить эти споры удастся не ранее 2005 г., когда Национальное управление по аэронавтике и космическим исследованиям США осуществит программу полета на Марс межпланетного корабля для отбора проб марсианской коры и доставки образцов на Землю. И если ученым удастся доказать, что микроорганизмы когда-то населяли Марс, то о внеземном возникновении жизни и о возможности занесения жизни из Космоса можно будет говорить с большей долей уверенности (рис. 5).
Рис. 5. Наше происхождение от микробов.
Что мы унаследовали от древних форм жизни? Приведенное ниже сравнение одноклеточных организмов с клетками человека выявляет много черт сходства.
1. Половое размножение
Две специализированные репродуктивные клетки водорослей – гаметы, – спариваясь, образуют клетку, несущую генетический материал от обоих родителей. Это удивительно напоминает оплодотворение яйцеклетки человека сперматозоидом.

2. Реснички
Тоненькие реснички на поверхности одноклеточной парамеции колышутся подобно крошечным веслам и обеспечивают ей движение в поисках пищи. Похожие реснички устилают дыхательные пути человека, выделяют слизь и задерживают чужеродные частицы.

3. Захват других клеток
Амеба поглощает пищу, окружая ее псевдоподией, которая образуется выдвижением и удлинением части клетки. В организме животного или человека амебовидные кровяные клетки похожим образом выдвигают псевдоподию, чтобы поглотить опасную бактерию. Этот процесс назван фагоцитозом.

 
4. Митохондрии
Первые эукариотные клетки возникли, когда амеба захватила прокариотные клетки аэробных бактерий, которые превратились в митохондрии. И хотя бактерии и митохондрии клетки (поджелудочной железы) не слишком похожи, у них одна функция – вырабатывать энергию в процессе окисления пищи.

       5. Жгутики
Длинный жгутик сперматозоида человека позволяет ему двигаться с большой скоростью. Бактерии и простейшие эукариоты тоже имеют жгутики с похожим внутренним строением. Он состоит из пары микротрубочек, окруженной девятью другими.

Эволюция жизни на Земле: от простого к сложному
В настоящее время, да, наверное, и в будущем, наука не сможет дать ответ на вопрос, как выглядел самый первый организм, появившийся на Земле, – предок, от которого берут начало три основные ветви древа жизни. Одна из ветвей – эукариоты, клетки которых имеют оформленное ядро, содержащее генетический материал, и специализированные органеллы: митохондрии, вырабатывающие энергию, вакуоли и др. К эукариотным организмам относятся водоросли, грибы, растения, животные и человек.
Вторая ветвь – это бактерии – прокариотные (доядерные) одноклеточные организмы, не имеющие выраженного ядра и органелл. И наконец, третья ветвь – одноклеточные организмы, именуемые археями, или архебактериями, клетки которых имеют такое же строение, как и у прокариот, но совсем другую химическую структуру липидов.
Многие архебактерии способны выживать в крайне неблагоприятных экологических условиях. Некоторые из них являются термофилами и обитают только в горячих источниках с температурой 90 °С и даже выше, где другие организмы попросту погибли бы. Превосходно чувствуя себя в таких условиях, эти одноклеточные организмы потребляют железо и серусодержащие вещества, а также ряд химических соединений, токсичных для других форм жизни. По мнению ученых, найденные термофильные архебактерии являются крайне примитивными организмами и в эволюционном отношении – близкими родственниками самых древних форм жизни на Земле.
Интересно, что современные представители всех трех ветвей жизни, наиболее похожие на своих прародителей, и сегодня обитают в местах с высокой температурой. Исходя из этого, некоторые ученые склонны считать, что, вероятнее всего, жизнь возникла около 4 млрд лет тому назад на дне океана вблизи горячих источников, извергающих потоки, богатые металлами и высокоэнергетическими веществами. Взаимодействуя друг с другом и с водой стерильного тогда океана, вступая в самые разнообразные химические реакции, эти соединения дали начало принципиально новым молекулам. Так, в течение десятков миллионов лет в этой “химической кухне” готовилось самое большое блюдо – жизнь. И вот около 4,5 млрд лет тому назад на Земле появились одноклеточные организмы, одинокое существование которых продолжалось весь докембрийский период.
Всплеск эволюции, давший начало многоклеточным организмам, произошел гораздо позже, немногим более полумиллиарда лет назад. Хотя размеры микроорганизмов столь малы, что в одной капле воды могут поместиться миллиарды, масштабы проведенной ими работы грандиозны.
Полагают, что первоначально в земной атмосфере и Мировом океане не было свободного кислорода, и в этих условиях жили и развивались лишь анаэробные микроорганизмы. Особым шагом в эволюции живого было возникновение фотосинтезирующих бактерий, которые, используя энергию света, превращали углекислый газ в углеводные соединения, служащие пищей для других микроорганизмов. Если первые фотосинтетики выделяли метан или сероводород, то появившиеся однажды мутанты начали вырабатывать в процессе фотосинтеза кислород. По мере накопления кислорода в атмосфере и водах анаэробные бактерии, для которых он губителен, заняли бескислородные ниши.
В древних ископаемых остатках, найденных в Австралии, возраст которых исчисляется 3,46 млрд лет, были обнаружены структуры, которые считают останками цианобактерий – первых фотосинтезирующих микроорганизмов. О былом господстве анаэробных микроорганизмов и цианобактерий свидетельствуют строматолиты, встречающиеся в мелководных прибрежных акваториях не загрязненных соленых водоемов. По форме они напоминают большие валуны и представляют интересное сообщество микроорганизмов, живущее в известняковых или доломитовых породах, образовавшихся в результате их жизнедеятельности. На глубину нескольких сантиметров от поверхности строматолиты насыщены микроорганизмами: в самом верхнем слое обитают фотосинтезирующие цианобактерии, вырабатывающие кислород; глубже обнаруживаются бактерии, которые до определенной степени терпимы к кислороду и не нуждаются в свете; в нижнем слое присутствуют бактерии, которые могут жить только в отсутствие кислорода. Расположенные в разных слоях, эти микроорганизмы составляют систему, объединенную сложными взаимоотношениями между ними, в том числе пищевыми. За микробной пленкой обнаруживается порода, образующаяся в результате взаимодействия остатков отмерших микроорганизмов с растворенным в воде карбонатом кальция. Ученые считают, что когда на первобытной Земле еще не было континентов и лишь архипелаги вулканов возвышались над поверхностью океана, мелководье изобиловало строматолитами.
В результате жизнедеятельности фотосинтезирующих цианобактерий в океане появился кислород, а примерно через 1 млрд лет после этого он начал накапливаться в атмосфере. Сначала образовавшийся кислород взаимодействовал с растворенным в воде железом, что привело к появлению окислов железа, которые постепенно осаждались на дне. Так в течение миллионов лет с участием микроорганизмов возникли огромные залежи железной руды, из которой сегодня выплавляется сталь.
Затем, когда основное количество железа в океанах подверглось окислению и уже не могло связывать кислород, он в газообразном виде ушел в атмосферу.
После того как фотосинтезирующие цианобактерии создали из углекислого газа определенный запас богатого энергией органического вещества и обогатили земную атмосферу кислородом, возникли новые бактерии – аэробы, которые могут существовать только в присутствии кислорода. Кислород им необходим для окисления (сжигания) органических соединений, а значительная часть получаемой при этом энергии превращается в биологически доступную форму – аденозинтрифосфат (АТФ). Этот процесс энергетически очень выгоден: анаэробные бактерии при разложении одной молекулы глюкозы получают только 2 молекулы АТФ, а аэробные бактерии, использующие кислород, – 36 молекул АТФ.
С появлением достаточного для аэробного образа жизни количества кислорода дебютировали и эукариотные клетки, имеющие в отличие от бактерий ядро и такие органеллы, как митохондрии, лизосомы, а у водорослей и высших растений – хлоропласты, где совершаются фотосинтетические реакции. По поводу возникновения и развития эукариот существует интересная и вполне обоснованная гипотеза, высказанная почти 30 лет назад американским исследователем Л.Маргулисом. Согласно этой гипотезе митохондрии, выполняющие функции фабрик энергии в эукариотной клетке, – это аэробные бактерии, а хлоропласты растительных клеток, в которых происходит фотосинтез, – цианобактерии, поглощенные, вероятно, около 2 млрд лет назад примитивными амебами. В результате взаимовыгодных взаимодействий поглощенные бактерии стали внутренними симбионтами и образовали с поглотившей их клеткой устойчивую систему – эукариотную клетку.
Исследования ископаемых останков организмов в породах разного геологического возраста показали, что на протяжении сотен миллионов лет после возникновения эукариотные формы жизни были представлены микроскопическими шаровидными одноклеточными организмами, такими как дрожжи, а их эволюционное развитие протекало очень медленными темпами. Но немногим более 1 млрд лет назад возникло множество новых видов эукариот, что обозначило резкий скачок в эволюции жизни.
Прежде всего это было связано с появлением полового размножения. И если бактерии и одноклеточные эукариоты размножались, производя генетически идентичные копии самих себя и не нуждаясь в половом партнере, то половое размножение у более высокоорганизованных эукариотных организмов происходит следующим образом. Две гаплоидные, имеющие одинарный набор хромосом половые клетки родителей, сливаясь, образуют зиготу, имеющую двойной набор хромосом с генами обоих партнеров, что создает возможности для новых генных комбинаций. Возникновение полового размножения привело к появлению новых организмов, которые и вышли на арену эволюции.
Три четверти всего времени существования жизни на Земле она была представлена исключительно микроорганизмами, пока не произошел качественный скачок эволюции, приведший к появлению высокоорганизованных организмов, включая человека. Проследим основные вехи в истории жизни на Земле по нисходящей линии.
1,2 млрд лет назад произошел взрыв эволюции, обусловленный появлением полового размножения и ознаменовавшийся появлением высокоорганизованных форм жизни – растений и животных.
Образование новых вариаций в смешанном генотипе, возникающем при половом размножении, проявилось в виде биоразнообразия новых форм жизни.
2 млрд лет назад появились сложноорганизованные эукариотные клетки, когда одноклеточные организмы усложнили свое строение за счет поглощения других прокариотных клеток. Одни из них – аэробные бактерии – превратились в митохондрии – энергетические станции кислородного дыхания. Другие – фотосинтетические бактерии – начали осуществлять фотосинтез внутри клетки-хозяина и стали хлоропластами в клетках водорослей и растений. Эукариотные клетки, имеющие эти органеллы и четко обособленное ядро, включающее генетический материал, составляют все современные сложные формы жизни – от плесневых грибов до человека.
3,9 млрд лет назад появились одноклеточные организмы, которые, вероятно, выглядели, как современные бактерии, и архебактерии. Как древние, так и современные прокариотные клетки устроены относительно просто: они не имеют оформленного ядра и специализированных органелл, в их желеподобной цитоплазме располагаются макромолекулы ДНК – носители генетической информации, и рибосомы, на которых происходит синтез белка, а энергия производится на цитоплазматической мембране, окружающей клетку.
4 млрд лет назад загадочным образом возникла РНК. Возможно, что она образовалась из появившихся на первобытной земле более простых органических молекул. Полагают, что древние молекулы РНК имели функции носителей генетической информации и белков-катализаторов, они были способны к репликации (самоудвоению), мутировали и подвергались естественному отбору. В современных клетках РНК не имеют или не проявляют этих свойств, но играют очень важную роль посредника в передаче генетической информации с ДНК на рибосомы, в которых происходит синтез белков.
А.Л. Прохоров
По материалам статьи Ричарда Монастерски
в журнале National Geographic, 1998 г. No 3

Возникновение жизни на Земле
Библиотека сайта
История развития жизни
Креационизм
Ссылки
Hазад

Возникновение жизни на Земле

Вопрос о том, когда на Земле появилась жизнь, всегда волновал не только ученых, но и всех людей. Ответы на него
содержатся в священных писаниях
практически всех религий. Хотя точного научного ответа на него до сих пор нет, некоторые факты позволяют высказать более или менее обоснованные гипотезы. В Гренландии исследователями был найден образец горной породы
с крошечным вкраплением углерода. Возраст образца более 3,8 млрд лет. Источником углерода, скорее всего, было какое-то органическое вещество – за такое время оно полностью утратило свою структуру. Ученые полагают, что этот комочек углерода может быть самым древним следом жизни на Земле.

Как выглядела первобытная Земля?
Перенесемся на 4 млрд лет назад. Атмосфера не содержит свободного кислорода, он находится только в составе окислов. Почти никаких звуков, кроме свиста ветра, шипения извергающейся с лавой воды и ударов метеоритов о поверхность Земли. Ни растений, ни животных, ни бактерий. Может быть, так выглядела Земля, когда на ней появилась жизнь? Хотя эта проблема издавна волнует многих исследователей, их мнения на этот счет сильно различаются. Об условиях на Земле того времени могли бы свидетельствовать горные породы, но они давно разрушились в результате геологических процессов и перемещений земной коры.
В этой статье мы кратко расскажем о нескольких гипотезах возникновения жизни, отражающих современные научные представления. Как считает известный специалист в области проблемы возникновения жизни Стэнли Миллер, о возникновении жизни и начале ее эволюции можно говорить с того момента, как органические молекулы самоорганизовывались в структуры, которые смогли воспроизводить самих себя. Но это порождает другие вопросы: как возникли эти молекулы; почему они могли самовоспроизводиться и собираться в те структуры, которые дали начало живым организмам; какие нужны для этого условия?
Согласно одной из гипотез жизнь началась в кусочке льда. Хотя многие ученые полагают, что присутствующий в атмосфере углекислый газ обеспечивал поддержание тепличных условий, другие считают, что на Земле господствовала зима. При низкой температуре все химические соединения более стабильны и поэтому могут накапливаться в больших количествах, чем при высокой температуре. Занесенные из космоса осколки метеоритов, выбросы из гидротермальных источников и химические реакции, происходящие при электрических разрядах в атмосфере, были источниками аммиака и таких органических соединений, как формальдегид и цианид. Попадая в воду Мирового океана, они замерзали вместе с ней. В ледяной толще молекулы органических веществ тесно сближались и вступали во взаимодействия, которые приводили к образованию глицина и других аминокислот. Океан был покрыт льдом, который защищал вновь образовавшиеся соединения от разрушения под действием ультрафиолетового излучения. Этот ледяной мир мог растаять, например, при падении на планету огромного метеорита (рис. 1).

Рис. 1.
Океан был покрыт льдом, который служил защитой от сильного ультрафиолетового излучения. В ледяной толще молекулы органических соединений могли тесно сближаться и взаимодействовать друг с другом с образованием новых, более сложных соединений
Чарлз Дарвин и его современники полагали, что жизнь могла возникнуть в водоеме. Этой точки зрения многие ученые придерживаются и в настоящее время. В замкнутом и сравнительно небольшом водоеме органические вещества, приносимые впадающими в него водами, могли накапливаться в необходимых количествах. Затем эти соединения еще больше концентрировались на внутренних поверхностях слоистых минералов, которые могли быть катализаторами реакций. Например, две молекулы фосфатальдегида, встретившиеся на поверхности минерала, реагировали между собой с образованием фосфорилированной углеводной молекулы – возможного предшественника рибонуклеиновой кислоты (рис. 2).

Рис. 2.
Вода, а вместе с ней различные химические соединения, поступающие из ледников, вулканов, гейзеров и осколков метеоритов, скапливаются в неглубоких водоемах
А может быть, жизнь возникла в районах вулканической деятельности? Непосредственно после образования Земля представляла собой огнедышащий шар магмы. При извержениях вулканов и с газами, высвобождавшимися из расплавленной магмы, на земную поверхность выносились разнообразные химические вещества, необходимые для синтеза органических молекул. Так, молекулы угарного газа, оказавшись на поверхности минерала пирита, обладающего каталитическими свойствами, могли реагировать с соединениями, имевшими метильные группы, и образовывать уксусную кислоту, из которой затем синтезировались другие органические соединения (рис. 3).

Рис. 3.
В местах вулканической активности при извержениях, выделении и выбросах газов из коры и магмы на земную поверхность попадали жизненно важные вещества, которые вступали в химические реакции, давая начало органическим соединениям
Впервые получить органические молекулы – аминокислоты – в лабораторных условиях, моделирующих те, что были на первобытной Земле, удалось американскому ученому Стэнли Миллеру в 1952 г. Тогда эти эксперименты стали сенсацией, и их автор получил всемирную известность. В настоящее время он продолжает заниматься исследованиями в области предбиотической (до возникновения жизни) химии в Калифорнийском университете. Установка, на которой был осуществлен первый эксперимент, представляла собой систему колб, в одной из которых можно было получить мощный электрический разряд при напряжении 100 000 В.
Миллер заполнил эту колбу природными газами – метаном, водородом и аммиаком, которые присутствовали в атмосфере первобытной Земли. В колбе, расположенной ниже, было небольшое количество воды, имитирующей океан. Электрический разряд по своей силе приближался к молнии, и Миллер ожидал, что под его действием образуются химические соединения, которые, попав затем в воду, прореагируют друг с другом и образуют более сложные молекулы.
Результат превзошел все ожидания. Выключив вечером установку и вернувшись на следующее утро, Миллер обнаружил, что вода в колбе приобрела желтоватую окраску. То, что образовалось, оказалось бульоном из аминокислот – строительных блоков белков. Таким образом этот эксперимент показал, как легко могли образоваться первичные ингредиенты живого. Всего-то и нужны были – смесь газов, маленький океан и небольшая молния.
Другие ученые склонны считать, что древняя атмосфера Земли отличалась от той, которую моделировал Миллер, и состояла, скорее всего, из углекислого газа и азота. Используя эту газовую смесь и экспериментальную установку Миллера, химики попытались получить органические соединения. Однако их концентрация в воде была такой ничтожной, как если бы растворили каплю пищевой краски в плавательном бассейне. Естественно, трудно себе представить, как могла возникнуть жизнь в таком разбавленном растворе.
Если действительно вклад земных процессов в создание запасов первичного органического вещества был столь незначителен, то откуда оно вообще взялось? Может быть, из космоса? Астероиды, кометы, метеориты и даже частицы межпланетной пыли могли нести на себе органические соединения, включая аминокислоты. Эти внеземные объекты могли обеспечить попадание в первичный океан или небольшой водоем достаточного для зарождения жизни количества органических соединений.
Последовательность и временной интервал событий, начиная от образования первичного органического вещества и кончая появлением жизни как таковой, остается и, наверное, навсегда останется загадкой, волнующей многих исследователей, равно как и вопрос, что. собственно, считать жизнью.
В настоящее время существует несколько научных определений жизни, но все они не точны. Одни из них настолько широки, что под них попадают такие неживые объекты, как огонь или кристаллы минералов. Другие – слишком узки, и в соответствии с ними мулы, не дающие потомства, не признаются живыми.
Одно из наиболее удачных определяет жизнь как самоподдерживающуюся химическую систему, способную вести себя в соответствии с законами дарвиновской эволюции. Это значит, что, во-первых, группа живых особей должна производить подобных себе потомков, которые наследуют признаки родителей. Во-вторых, в поколениях потомков должны проявляться последствия мутаций – генетических изменений, которые наследуются последующими поколениями и обуславливают популяционную изменчивость. И в-третьих, необходимо, чтобы действовала система естественного отбора, в результате которого одни особи получают преимущество перед другими и выживают в изменившихся условиях, давая потомство.
Какие же элементы системы были необходимы, чтобы у нее появились характеристики живого организма? Большое число биохимиков и молекулярных биологов считают, что необходимыми свойствами обладали молекулы РНК. РНК – рибонуклеиновые кислоты – это особенные молекулы. Одни из них могут реплицироваться, мутировать, таким образом передавая информацию, и, следовательно, они могли участвовать в естественном отборе. Правда, они не способны сами катализировать процесс репликации, хотя ученые надеются, что в недалеком будущем будет найден фрагмент РНК с такой функцией. Другие молекулы РНК задействованы в “считывании” генетической информации и передаче ее на рибосомы, где происходит синтез белковых молекул, в котором принимают участие молекулы РНК третьего типа.
Таким образом самая примитивная живая система могла быть представлена молекулами РНК, удваивающимися, подвергающимися мутациям и подверженными естественному отбору. В ходе эволюции на основе РНК возникли специализированные молекулы ДНК – хранители генетической информации – и не менее специализированные молекулы белка, взявшие на себя функции катализаторов синтеза всех известных в настоящее время биологических молекул.
В некий момент времени “живая система” из ДНК, РНК и белка нашла приют внутри мешочка, образованного липидной мембраной, и эта более защищенная от внешних воздействий структура послужила прототипом самых первых клеток, давших начало трем основным ветвям жизни, которые представлены в современном мире бактериями, археями и эукариотами. Что касается даты и последовательности появления таких первичных клеток, то это остается загадкой. Кроме того, по простым вероятностным оценкам для эволюционного перехода от органических молекул к первым организмам не хватает времени – первые простейшие организмы появились слишком внезапно.
В течение многих лет ученые полагали, что жизнь вряд ли могла возникнуть и развиваться в тот период, когда Земля постоянно подвергалась столкновениям с большими кометами и метеоритами, а завершился этот период примерно 3,8 млрд лет тому назад. Однако недавно в самых древних на Земле осадочных породах, найденных в юго-западной части Гренландии, были обнаружены следы сложных клеточных структур, возраст которых составляет по крайней мере 3,86 млрд лет. Значит, первые формы жизни могли возникнуть за миллионы лет до того, как прекратилась бомбардировка нашей планеты крупными космическими телами. Но тогда возможен и совсем другой сценарий (рис. 4).

Рис. 4.
Органическое вещество попадало на Землю из космоса вместе с метеоритами и другими внеземными объектами, бомбардировавшими планету в течение сотен миллионов лет с момента ее образования. Ныне столкновение с метеоритом – событие довольно редкое, но и сейчас из космоса вместе с межпланетным материалом на Землю продолжают поступать точно такие же соединения, как и на заре жизни
Падавшие на Землю космические объекты могли сыграть центральную роль в возникновении жизни на нашей планете, так как, по мнению ряда исследователей, клетки, подобные бактериям, могли возникнуть на другой планете и затем уже попасть на Землю вместе с астероидами. Одно из свидетельств в пользу теории внеземного происхождения жизни было обнаружено внутри метеорита, по форме напоминающего картофелину и названного ALH84001. Первоначально этот метеорит был частичкой марсианской коры, которая затем была выброшена в космос в результате взрыва при столкновении огромного астероида с поверхностью Марса, происшедшего около 16 млн лет назад. А 13 тыс. лет назад после длительного путешествия в пределах Солнечной системы этот осколок марсианской породы в виде метеорита приземлился в Антарктике, где и был недавно обнаружен. При детальном исследовании метеорита внутри него были обнаружены палочковидные структуры, напоминающие по форме окаменелые бактерии, что дало повод для бурных научных споров о возможности жизни в глубине марсианской коры. Разрешить эти споры удастся не ранее 2005 г., когда Национальное управление по аэронавтике и космическим исследованиям США осуществит программу полета на Марс межпланетного корабля для отбора проб марсианской коры и доставки образцов на Землю. И если ученым удастся доказать, что микроорганизмы когда-то населяли Марс, то о внеземном возникновении жизни и о возможности занесения жизни из Космоса можно будет говорить с большей долей уверенности (рис. 5).
Рис. 5. Наше происхождение от микробов.
Что мы унаследовали от древних форм жизни? Приведенное ниже сравнение одноклеточных организмов с клетками человека выявляет много черт сходства.
1. Половое размножение
Две специализированные репродуктивные клетки водорослей – гаметы, – спариваясь, образуют клетку, несущую генетический материал от обоих родителей. Это удивительно напоминает оплодотворение яйцеклетки человека сперматозоидом.

2. Реснички
Тоненькие реснички на поверхности одноклеточной парамеции колышутся подобно крошечным веслам и обеспечивают ей движение в поисках пищи. Похожие реснички устилают дыхательные пути человека, выделяют слизь и задерживают чужеродные частицы.

3. Захват других клеток
Амеба поглощает пищу, окружая ее псевдоподией, которая образуется выдвижением и удлинением части клетки. В организме животного или человека амебовидные кровяные клетки похожим образом выдвигают псевдоподию, чтобы поглотить опасную бактерию. Этот процесс назван фагоцитозом.

 
4. Митохондрии
Первые эукариотные клетки возникли, когда амеба захватила прокариотные клетки аэробных бактерий, которые превратились в митохондрии. И хотя бактерии и митохондрии клетки (поджелудочной железы) не слишком похожи, у них одна функция – вырабатывать энергию в процессе окисления пищи.

       5. Жгутики
Длинный жгутик сперматозоида человека позволяет ему двигаться с большой скоростью. Бактерии и простейшие эукариоты тоже имеют жгутики с похожим внутренним строением. Он состоит из пары микротрубочек, окруженной девятью другими.

Эволюция жизни на Земле: от простого к сложному
В настоящее время, да, наверное, и в будущем, наука не сможет дать ответ на вопрос, как выглядел самый первый организм, появившийся на Земле, – предок, от которого берут начало три основные ветви древа жизни. Одна из ветвей – эукариоты, клетки которых имеют оформленное ядро, содержащее генетический материал, и специализированные органеллы: митохондрии, вырабатывающие энергию, вакуоли и др. К эукариотным организмам относятся водоросли, грибы, растения, животные и человек.
Вторая ветвь – это бактерии – прокариотные (доядерные) одноклеточные организмы, не имеющие выраженного ядра и органелл. И наконец, третья ветвь – одноклеточные организмы, именуемые археями, или архебактериями, клетки которых имеют такое же строение, как и у прокариот, но совсем другую химическую структуру липидов.
Многие архебактерии способны выживать в крайне неблагоприятных экологических условиях. Некоторые из них являются термофилами и обитают только в горячих источниках с температурой 90 °С и даже выше, где другие организмы попросту погибли бы. Превосходно чувствуя себя в таких условиях, эти одноклеточные организмы потребляют железо и серусодержащие вещества, а также ряд химических соединений, токсичных для других форм жизни. По мнению ученых, найденные термофильные архебактерии являются крайне примитивными организмами и в эволюционном отношении – близкими родственниками самых древних форм жизни на Земле.
Интересно, что современные представители всех трех ветвей жизни, наиболее похожие на своих прародителей, и сегодня обитают в местах с высокой температурой. Исходя из этого, некоторые ученые склонны считать, что, вероятнее всего, жизнь возникла около 4 млрд лет тому назад на дне океана вблизи горячих источников, извергающих потоки, богатые металлами и высокоэнергетическими веществами. Взаимодействуя друг с другом и с водой стерильного тогда океана, вступая в самые разнообразные химические реакции, эти соединения дали начало принципиально новым молекулам. Так, в течение десятков миллионов лет в этой “химической кухне” готовилось самое большое блюдо – жизнь. И вот около 4,5 млрд лет тому назад на Земле появились одноклеточные организмы, одинокое существование которых продолжалось весь докембрийский период.
Всплеск эволюции, давший начало многоклеточным организмам, произошел гораздо позже, немногим более полумиллиарда лет назад. Хотя размеры микроорганизмов столь малы, что в одной капле воды могут поместиться миллиарды, масштабы проведенной ими работы грандиозны.
Полагают, что первоначально в земной атмосфере и Мировом океане не было свободного кислорода, и в этих условиях жили и развивались лишь анаэробные микроорганизмы. Особым шагом в эволюции живого было возникновение фотосинтезирующих бактерий, которые, используя энергию света, превращали углекислый газ в углеводные соединения, служащие пищей для других микроорганизмов. Если первые фотосинтетики выделяли метан или сероводород, то появившиеся однажды мутанты начали вырабатывать в процессе фотосинтеза кислород. По мере накопления кислорода в атмосфере и водах анаэробные бактерии, для которых он губителен, заняли бескислородные ниши.
В древних ископаемых остатках, найденных в Австралии, возраст которых исчисляется 3,46 млрд лет, были обнаружены структуры, которые считают останками цианобактерий – первых фотосинтезирующих микроорганизмов. О былом господстве анаэробных микроорганизмов и цианобактерий свидетельствуют строматолиты, встречающиеся в мелководных прибрежных акваториях не загрязненных соленых водоемов. По форме они напоминают большие валуны и представляют интересное сообщество микроорганизмов, живущее в известняковых или доломитовых породах, образовавшихся в результате их жизнедеятельности. На глубину нескольких сантиметров от поверхности строматолиты насыщены микроорганизмами: в самом верхнем слое обитают фотосинтезирующие цианобактерии, вырабатывающие кислород; глубже обнаруживаются бактерии, которые до определенной степени терпимы к кислороду и не нуждаются в свете; в нижнем слое присутствуют бактерии, которые могут жить только в отсутствие кислорода. Расположенные в разных слоях, эти микроорганизмы составляют систему, объединенную сложными взаимоотношениями между ними, в том числе пищевыми. За микробной пленкой обнаруживается порода, образующаяся в результате взаимодействия остатков отмерших микроорганизмов с растворенным в воде карбонатом кальция. Ученые считают, что когда на первобытной Земле еще не было континентов и лишь архипелаги вулканов возвышались над поверхностью океана, мелководье изобиловало строматолитами.
В результате жизнедеятельности фотосинтезирующих цианобактерий в океане появился кислород, а примерно через 1 млрд лет после этого он начал накапливаться в атмосфере. Сначала образовавшийся кислород взаимодействовал с растворенным в воде железом, что привело к появлению окислов железа, которые постепенно осаждались на дне. Так в течение миллионов лет с участием микроорганизмов возникли огромные залежи железной руды, из которой сегодня выплавляется сталь.
Затем, когда основное количество железа в океанах подверглось окислению и уже не могло связывать кислород, он в газообразном виде ушел в атмосферу.
После того как фотосинтезирующие цианобактерии создали из углекислого газа определенный запас богатого энергией органического вещества и обогатили земную атмосферу кислородом, возникли новые бактерии – аэробы, которые могут существовать только в присутствии кислорода. Кислород им необходим для окисления (сжигания) органических соединений, а значительная часть получаемой при этом энергии превращается в биологически доступную форму – аденозинтрифосфат (АТФ). Этот процесс энергетически очень выгоден: анаэробные бактерии при разложении одной молекулы глюкозы получают только 2 молекулы АТФ, а аэробные бактерии, использующие кислород, – 36 молекул АТФ.
С появлением достаточного для аэробного образа жизни количества кислорода дебютировали и эукариотные клетки, имеющие в отличие от бактерий ядро и такие органеллы, как митохондрии, лизосомы, а у водорослей и высших растений – хлоропласты, где совершаются фотосинтетические реакции. По поводу возникновения и развития эукариот существует интересная и вполне обоснованная гипотеза, высказанная почти 30 лет назад американским исследователем Л.Маргулисом. Согласно этой гипотезе митохондрии, выполняющие функции фабрик энергии в эукариотной клетке, – это аэробные бактерии, а хлоропласты растительных клеток, в которых происходит фотосинтез, – цианобактерии, поглощенные, вероятно, около 2 млрд лет назад примитивными амебами. В результате взаимовыгодных взаимодействий поглощенные бактерии стали внутренними симбионтами и образовали с поглотившей их клеткой устойчивую систему – эукариотную клетку.
Исследования ископаемых останков организмов в породах разного геологического возраста показали, что на протяжении сотен миллионов лет после возникновения эукариотные формы жизни были представлены микроскопическими шаровидными одноклеточными организмами, такими как дрожжи, а их эволюционное развитие протекало очень медленными темпами. Но немногим более 1 млрд лет назад возникло множество новых видов эукариот, что обозначило резкий скачок в эволюции жизни.
Прежде всего это было связано с появлением полового размножения. И если бактерии и одноклеточные эукариоты размножались, производя генетически идентичные копии самих себя и не нуждаясь в половом партнере, то половое размножение у более высокоорганизованных эукариотных организмов происходит следующим образом. Две гаплоидные, имеющие одинарный набор хромосом половые клетки родителей, сливаясь, образуют зиготу, имеющую двойной набор хромосом с генами обоих партнеров, что создает возможности для новых генных комбинаций. Возникновение полового размножения привело к появлению новых организмов, которые и вышли на арену эволюции.
Три четверти всего времени существования жизни на Земле она была представлена исключительно микроорганизмами, пока не произошел качественный скачок эволюции, приведший к появлению высокоорганизованных организмов, включая человека. Проследим основные вехи в истории жизни на Земле по нисходящей линии.
1,2 млрд лет назад произошел взрыв эволюции, обусловленный появлением полового размножения и ознаменовавшийся появлением высокоорганизованных форм жизни – растений и животных.
Образование новых вариаций в смешанном генотипе, возникающем при половом размножении, проявилось в виде биоразнообразия новых форм жизни.
2 млрд лет назад появились сложноорганизованные эукариотные клетки, когда одноклеточные организмы усложнили свое строение за счет поглощения других прокариотных клеток. Одни из них – аэробные бактерии – превратились в митохондрии – энергетические станции кислородного дыхания. Другие – фотосинтетические бактерии – начали осуществлять фотосинтез внутри клетки-хозяина и стали хлоропластами в клетках водорослей и растений. Эукариотные клетки, имеющие эти органеллы и четко обособленное ядро, включающее генетический материал, составляют все современные сложные формы жизни – от плесневых грибов до человека.
3,9 млрд лет назад появились одноклеточные организмы, которые, вероятно, выглядели, как современные бактерии, и архебактерии. Как древние, так и современные прокариотные клетки устроены относительно просто: они не имеют оформленного ядра и специализированных органелл, в их желеподобной цитоплазме располагаются макромолекулы ДНК – носители генетической информации, и рибосомы, на которых происходит синтез белка, а энергия производится на цитоплазматической мембране, окружающей клетку.
4 млрд лет назад загадочным образом возникла РНК. Возможно, что она образовалась из появившихся на первобытной земле более простых органических молекул. Полагают, что древние молекулы РНК имели функции носителей генетической информации и белков-катализаторов, они были способны к репликации (самоудвоению), мутировали и подвергались естественному отбору. В современных клетках РНК не имеют или не проявляют этих свойств, но играют очень важную роль посредника в передаче генетической информации с ДНК на рибосомы, в которых происходит синтез белков.
А.Л. Прохоров
По материалам статьи Ричарда Монастерски
в журнале National Geographic, 1998 г. No 3
© 2024 Библиотека RealLib.org (support [a t] reallib.org)