"Природа времени: Гипотеза о происхождении и физической сущности времени" - читать интересную книгу автора (Бич Анатолий Макарович)2.1. Обоснования и представленияКак бы и кто бы сегодня ни критиковал теорию относительности, как бы ни доказывали оппоненты Эйнштейна, что у него не было достаточных оснований для превращения принципа относительности Галилея в принцип относительности Эйнштейна и, тем более, для абсолютизации скорости света, как бы мы ни сомневались в правоте Эйнштейна относительно его «геометризации» гравитационных отношений, мы должны помнить следующее. Именно Альберт Эйнштейн впервые за 2,5–3 тысячи лет с тех пор, как мудрецы начали формулировать понятие времени, не только показал, что время зависит от определенных процессов (событий) — об этом подозревали и раньше, но показал, как время зависит от взаимоотношений между событиями (телами). Подчеркнем еще раз то, что сегодня знает о времени официальная — ортодоксальная физика. Чтобы не утруждать себя, предоставим слово одному из строгих последователей теории относительности Полу Девису: «Здравый смысл приучил нас мыслить в понятиях Времени, рассматриваемого как нечто универсальное и абсолютное, относительно чего мы отмериваем все события. Мы не делаем различия между своим и чужим временем — существует лишь единое время. Теория относительности отвергает столь упрощенный подход. Время, подобно пространству, также способно растягиваться или сжиматься в зависимости от движения наблюдателя. Два события могут считаться, с точки зрения одного наблюдателя, разделенными промежутком времени в один час, с точки зрения другого — одной минутой. Это не просто психологический эффект. Время действительно можно затянуть или замедлить, даже в лаборатории, и зарегистрировать этот эффект можно с помощью точных часов… Точность хода современных атомных часов позволяет различить малейшее замедление времени даже на борту реактивного авиалайнера… Одно из самых сильных замедлений времени, которое удалось создать человеку, происходит на установке в Дарсбери (Великобритания)… Электроны движутся со скоростью лишь на одну десятитысячную процента меньше скорости света; при этом масштаб времени растягивается по сравнению с нашим примерно в десять тысяч раз… Замедление времени создается также и гравитацией. На крыше здания время течет чуть быстрее, чем у его основания, хотя эффект слишком слаб, чтобы его можно было заметить. Однако специальные «ядерные часы» позволяют обнаружить разность в течении времени даже в масштабах высоты здания. Чтобы проверить, влияет ли гравитация на течение времени, часы помещали на борт летающих на больших высотах самолетов и ракет. Реальность замедления времени не вызывает сомнений; в космосе время течет заметно быстрее, чем на Земле. По астрономическим меркам гравитационное поле Земли довольно невелико; известны космические объекты, которые вызывают гораздо более сильное замедление времени. Например, на поверхности нейтронной звезды (чайная ложка ее вещества весит больше всех континентов Земли) гравитация такова, что время может течь (там) вдвое медленнее, чем на Земле… То обстоятельство, что время не является абсолютным и универсальным, а подвержено изменениям, подрывает многие представления, основанные на нашем повсеместном опыте. Если мое время может разойтись с вашим из-за того, что мы по-разному движемся или находимся в неодинаковых гравитационных полях, то не имеет смысла говорить о «времени вообще» или пользоваться понятием «теперь»… Время сугубо относительно. В нашей собственной системе отсчета оно течет своим темпом. Независимо оттого, как мы движемся или как меняется гравитационное поле, течение времени нам будет казаться обычным. Необычные эффекты возникают, когда сравнивается время в двух различных системах отсчета. Тогда мы обнаруживаем, что в каждой системе отсчета время течет по-своему и что одна шкала времени, как правило, не согласуется с другой» {15}. Итак, современная наука выделяет два времяформирующих фактора, две главные причины, по которым время тел, вообще говоря, время любой локальности Вселенной может изменяться. Это гравитация и относительная скорость тела. При этом обратите внимание, что таким образом декларируется зависимость собственного времени любого тела от внешних причин (за исключением частного случая, когда рассматривается зависимость времени от поля тяготения самого тела). Эйнштейн твердо стоял на реляционных позициях. Для него время — это порождение процессов (явлений) материального мира. Он писал: «Даже синхронизованные часы не дают нам «время» в том виде, какое нужно для физических целей» {11}. Он считал, что без установления причинной связи между событиями, происходящими в тех точках, где расположены часы, понятие времени не имеет физического смысла. Впервые завею историю человечества Эйнштейн ответил на вопрос, какие факторы и как влияют на скорость течения времени, но не ответил на вопрос, почему эти факторы именно так влияют на время. А действительно, почему? Ответа нет. Вернее, теория относительности отвечает примерно так: собственное время тела замедляется, если оно движется, и тем значительнее, чем скорость его ближе к скорости света (замедление времени пропорционально отношению инертной (релятивистской) массы тела к его массе покоя). Или: собственное время тела ускоряется при удалении тела от гравитирующей массы (обратно пропорционально квадрату расстояния). Но почему? Не странно ли, что реальность явления установлена, а природа — причина явления — не установлена? Скажем так: странно, но не очень. Ибо развитие науки чаще всего именно так и происходит. Со времени Галилея — Ньютона (когда родилась современная наука) и до сегодняшнего дня включительно физики нередко открывают явления Природы, не открывая, почему эти явления происходят. Таково положение с гравитацией, так, очевидно, еще долгое время будете принципом неопределенности квантовой механики, так случилось и со временем. Человечество вначале осознает некий факт как реальность, а затем пытается понять причин ы и условия существования факта. Эйнштейн установил, что время зависит от условий взаимодействия материальных систем и отточки зрения наблюдателя (системы отсчета), и это, безусловно, был революционный прорыв в понимании времени. Но при этом закрадывается смутное подозрение, что его совершенно не интересовала природа времени. Очевидно, это впечатление ложное, не мог он не задумываться над вопросом: «Что такое время, какова его природа?» Тем не менее, факт остается фактом: занимаясь временем значительную часть своей жизни, Эйнштейн проблему физической сущности времени не решил. (Не решена эта проблема и сегодняшней теоретической физикой.) Причин этого у Эйнштейна, очевидно, было несколько. Может быть, одна из них заключалась в том, что слишком близко (по времени) было ньютоновское понимание абсолютного времени и подспудно постоянно довлела внутренняя потребность дистанцироваться от Ньютона. Переход от абсолютного времени к относительному на первоначальном этапе создания релятивистской физики был не просто новым, а в какой-то мере и потрясшим воображение. Возможно, поэтому и сам Эйнштейн так много уделял внимания относительности времени. Но, все-таки эта причина не могла быть главной. Впоследствии Эйнштейна захватили идеи взаимозависимости гравитации и кривизны пространства-времени, и тут собственно время не было главным объектом внимания ученого. Потом Эйнштейн трудился над квантовой теорией и единой теорией поля, и работа по изучению сущности времени была отодвинута в сторону. Как бы то ни было, но великий физик, которому, казалось бы, и нужно-то было сделать всего маленький шажок, чтобы разобраться в природе времени, этого шага не сделал. Может быть, существует еще одна причина, возможно, не самая главная, но достаточно глубокая и мировоззренческая. Как реликт прошлого, над всеми физиками — современниками Эйнштейна (да и над многими сегодняшними) витала (и витает) тень представления о времени как о некой единой мировой универсальной сущности (или субстанции). Удивительным образом это представление сочетается с пониманием относительности времени. Все знают, что время различных тел сопоставимо только с учетом факторов относительности. Но ведь это если сопоставлять… А если время существует где-то там, в безбрежной Вселенной, и никаким наблюдателям до него нет дела? Тогда как? И вот за спиной физиков, как призрак прошлого, незримо и негласно маячит и воздействует представление не просто об универсальном по природе времени, но о едином мировом времени, которое существует как бы само по себе (пока его не оценивают через критерии относительности или пока не воздействует на него изменяющееся гравитационное поле). И существует такое время как бы параллельно с материей (веществом), и хотя и взаимодействует с материей, но генетически, т. е. по происхождению, с ней не связано. Не знаю, ощущал ли Эйнштейн присутствие этого «призрака» у себя за спиной. Но если нет, то как объяснить, что Эйнштейн допускал возможность существования времени без материи? Напомним, что ньютоновская физика также считала, что Мир — это пространственно-временное «вместилище» всего сущего, независимое от материи. Вот что пишет У. Каспер: «…частная и общая теории относительности не отказывают»! от представления о том, что пространство-время может существовать независимо от материи». У. Каспер как бы оценивает это представление с современных позиций: «В настоящее время… это фундаментальное предположение выглядит недостаточно обоснованным». И далее несколько пессимистично завершает фразу: «Однако вряд ли мы можем предложить другую структуру теоретической физики и указать то место на пути развития этой науки, начиная с которого она могла бы отклониться от выбранного ею магистрального пути» {41}. Можно предположить, что Эйнштейн и его строгие последователи допускали относительную независимость времени от материи, так как наделяли пространство гравитационными свойствами. Получается, что если пространство может изменяться-искривляться (а пространство и время существуют как бы в неразрывном единстве), то и время, следовательно, может изменяться без участия материи. Допуская, что время может существовать без материи, Эйнштейн не обратил внимания на состояние материи, из которой состоит сам физический объект, собственное время которого может изменяться в зависимости от скорости и гравитации. Странно это, хотя Эйнштейна можно понять. Ко времени создания специальной теории относительности только-только появилась первая модель атома Э. Резерфорда, а в год завершения общей теории относительности не было еще ни разработанной теории поля, ни представлений о физическом вакууме. В его абстрактную, практически идеализированную модельвзаимоотношений скорости и времени, гравитации и пространства-времени конкретное состояние реальных тел просто не вписывалось. Из всех возможных физико-химико-механических взаимодействий, которые могли бы изменить собственное время объекта, в классической теории относительности участвует только гравитация. Еще более странно, что законсервированное отстранение собственного состояния тела от его собственного времени вполне устраивает современное видение времени. Итак, выбрав в качестве исходной базы теорию относительности Эйнштейна, мы выдвигаем наше первое концептуальное положение, отличное от классического представления теории относительности: время не может существовать независимо от материи. Второе нашеконцептуальное положение можно сформулировать так:собственное время любого материального субъекта Вселенной зависит, кроме всего прочего, и от состояния самого субъекта, а именно от энергии внутренних процессов, протекающих в субъекте. Уже не в первый раз мы используем термин «собственное время». При всей кажущейся очевидности это понятие совсем не простое. Собственное время — это пространственно-временной интервал между двумя событиями; происходящими в объекте (с объектом), т. е. двумя точками, взятыми на траектории движения материального объекта (тела). В этом случае собственное время тела измеряется по часам, совмещенным с телом (по часам системы отсчета, относительно которой тело покоится), или по часам инерциальной системы, относительно которой движется тело. В соответствии с величиной скорости тела относительно системы отсчета его собственное время будет тем более замедленно, чем больше эта относительная скорость, чем ближе она к скорости света; при этом временной интервал на часах движущегося тела будет растянут по сравнению с собственным временем покоящегося тела, а темп его времени — замедлен. Если с первым концептуальным положением сегодня, как мне кажется, согласны большинство физиков и философов (на это намекал и У. Каспер) и это положение можно оставить без специальной аргументации, как постулат, то второе положение требует обоснования. При самом общем подходе можно отметить, что Вселенная проявляет себя наиболее полно и вездесуще (наиболее фундаментально), во-первых, через гравитационные взаимодействия, а во-вторых, через энергосущность всех без исключения процессов и явлений как на макро-, так и на микроуровнях. То есть Вселенная выражает себя через гравитацию и другие материально-энергетические проявления.[14] Важным для аргументации второго постулата является утверждение о том, что внутренняя энергия тел не является величиной сохраняющейся ни относительно скорости тел, ни относительно гравитации. Это, попросту говоря, значит, что при изменении скорости тела или при изменении гравитационного воздействия на тело его внутренняя энергия также изменяется. Если относительно гравитации это кажется более или менее очевидным, то вероятность влияния скорости на внутреннюю энергию движущегося тела вызывает внутреннее возражение или настороженность. Если вы не очень искушены в физике, то интуиция и здравый смысл услужливо подсказывают ответ: внутренняя энергия тела является величиной, сохраняющейся относительно скорости движения, т. е. не зависит от скорости, поскольку движение и покой тела зависят от того, с чем мы их сравниваем. Казалось бы, это очевидно. Ведь материальная система не знает, что мы рассматриваем ее относительно той или иной системы отсчета; какое дело до этого, например, интенсивности ядерных процессов или химических реакций, происходящих в теле; казалось бы, это их сугубо личное дело. Увы, интуиция и здравый смысл в очередной раз готовы подвести нас. Вроде бы очевидно, но это также очевидно, как для наших далеких предков было очевидно, что Земля плоская (в самом деле, что могло быть для них нелепее, чем круглая Земля, — ведь на противоположной стороне шара пришлось бы ходить вниз головой, да и дождь будет идти снизу вверх). Но дело, однако, не только в интуиции. В 1900–1905 гг. под руководством А. Пуанкаре были проведены работы, которые убедительно показали, что процессы, протекающие на Земле, не зависят от движения Земли. Как это понимать? Опыты А. Пуанкаре как будто бы подтверждают наше интуитивное ожидание независимости внутренней энергии от скорости движения… Секрет, однако, в том, что скорость движения Земли по орбите составляет всего 0,0001 скорости света, т. е. скорости эти совершенно несопоставимы. И все-таки сомнения остаются. Иное дело, если вы знаете теорию относительности и абсолютно верите в нее. Тогда вам известно, что с увеличением скорости растет кинетическая энергия и, соответственно, инертная масса тела, а значит, растет и полная масса и собственное поле тяготения тела. Ибо «из-за эквивалентности массы и энергии энергия, связанная сдвижением, проявляется как дополнительная масса». Далее воздействие на тело — такое же, как и от внешнего гравитационного поля. Казалось бы, все в порядке, отчего же смутное внутреннее возражение не покидает нас? Оттого, что, рассматривая некое тело относительно различных систем отсчета, мы, в общем случае, придаем ему любые различные скорости, оно одновременно может и покоиться, вдвигаться, в том числе и в противоположные стороны. С точки зрения здравого смысла это нелепо. Да, говорят сторонники Эйнштейна, бессмысленно вообще ставить вопрос об истинной скорости тела и его времени. Они всегда относительны. Таким образом, в соответствии с теорией относительности внутренняя энергия любого движущегося тела зависит от его скорости, но количественные показатели этого воздействия всегда относительны. Получается, что скорость движения материальной системы непосредственно не влияет на ее внутреннюю энергию, но опосредованно (в зависимости от выбора той или иной точки зрения) влияет. Если вы полностью удовлетворены вышеприведенными рассуждениями, то я вам немного… завидую. Как бы деликатнее выразиться?.. Это значит, что вы мыслите, как добротный специалист, но вот проблема… Значит, вы не просто знаете релятивистскую физику, но уже и верите в ее положения, как правоверный прихожанин верит в церковные догмы. Иначе вы обратили бы внимание на то, что вам только что предложили модель. А любая модель, даже общепринятая, это некоторое упрощение реальной действительности, упрощение, необходимое для возможности описания. В данном случае во имя сохранения модели отбрасывается истина о том, что все движущиеся тела двигаются не только относительно произвольного наблюдателя (абстрактной системы отсчета), но и относительно некой реальной среды — физической системы отсчета. Нам снова предложили почти идеализированную модель. Сегодня степень замедления времени у движущегося тела зависит от соотношения его скорости и скорости света. При этом молчаливо предполагается, что движется тело как бы в пустоте. Для модели это, может быть, и допустимо. А в реальности? Ведь пустоты нет даже в межзвездном пространстве. Там в среднем каждый кубический сантиметр содержит 1 атом, там содержатся пылинки… Если тело объемом в один кубический сантиметр движется со скоростью 0,8 с, то в течение каждой секунды оно сталкивается с 24 миллиардами атомов… А в межзвездном пространстве есть еще магнитные поля, вдоль силовых линий которых движутся электроны, протоны…Так будет ли от столкновения реального тела с реальной средой зависеть состояние тела и его собственное время? Безусловно, да. Ортодоксы скажут: прекрасно, чем больше скорость, тем ощутимее взаимодействие тела со средой, что в скрытом виде и декларирует преобразование Лоренца. И это действительно так. Релятивистские эффекты, по крайней мере, эффект замедления времени у тел, движущихся с большими скоростями, зафиксирован. И этот эффект тем значительнее, чем ближе к единице отношение скорости тела к скорости света. Таким образом, получается, что эффект обнаруживает себя и без всякого учета взаимодействия движущегося тела с реальной физической средой. Какой из этого следует вывод? Только тот, что фактические взаимодействия замедляют собственное время движущихся тел тем значительнее, чем больше их скорости. Получается, что и подозреваемые реальные контакты, и абстрактная модель как бы одинаково работают на конечный результат. Может быть, это одна из причин, почему сторонники теории относительности так цепко держатся за преобразования Лоренца. Так-то оно так, но проблема в том, что «среды» бывают разные. Несопоставимо пространство в атмосфере Земли или вблизи от Солнца с межзвездным пространством. Возможно, допустима аналогия: человек, который стоит без зонтика под дождем, мокнет меньше, чем человек, бегущий под дождем. И чем быстрее бежит человек, тем больше капель он встретит на своем пути в единицу времени. И тут тоже, казалось бы, можно использовать абстракции специальной теории относительности. Если бы не одно «но»: дожди бывают разные — и несколько капель в минуту, и ливень «как из ведра». И тут уже эффект намокания будет зависеть не только оттого, с какой скоростью бежит человек. Конечно, только что высказанные соображения не отличаются большой оригинальностью. Мне они нужны только лишь для того, чтобы подчеркнуть безусловную зависимость состояния тела и его собственного времени от реальных взаимодействий. Специалисты, критикующие специальную теорию относительности (СТО), высказывают подобные соображения более точным языком. Например {42}: «…мы сделали вывод, что в четырехмерном кинематическом формализме СТО имеется «скрытая» в геометрии пространства динамика. Другими словами, если учесть взаимодействие света (фотонов) с приборами, полями и веществом, можно получить экспериментально проверенные кинематические формулы СТО, оставаясь в рамках модели трехмерного евклидова пространства и независимого от него времени». Встречаются, к сожалению, и резкие высказывания: «Фактом является удивительное непонимание физической сущности специальной теории относительности при совершенном владении ее техникой у множества вполне и даже очень высококвалифицированных физиков…»[15] Короче говоря, для того чтобы полноценно использовать единую для всех случаев модель Фитцджеральда, Лоренца, Эйнштейна, необходимо наполнить ее реальными параметрами реальных сред. Только в этом случае можно адекватно оценивать, как изменяется при движении с различной скоростью состояние тела и его собственное время, а также и состояние самого пространства в локальности движущегося тела. Впрочем, для нас сейчас более важен вывод другой: при изменении гравитационного поля в окрестности тела или при изменении скорости тела изменяется его собственное время (как это и утверждает теория относительности), но одновременно изменяется и его внутренняя энергия. Иными словами, иному изменению собственного времени тела как бы предшествует изменение его внутренней энергии. Проделаем простой до банальности мысленный эксперимент. Пройдем на кухню и наполним чайник холодной водой. Субъект Вселенной — чайник, который стоит на столе, покоится относительно Земли (так как вращается вместе с ней) и с определенной силой притягивается к Земле. Собственное время чайника и его внутренняя энергия зависят от этой силы притяжения и от температуры воды. Поставим чайник на огонь. По мере нагревания воды внутренняя энергия чайника будет изменяться — возрастать. Одновременно и пропорционально увеличению внутренней энергии будет изменяться и собственное время чайника, так как темп «течения» времени в нашем чайнике будет увеличиваться. То есть я хочу подчеркнуть, что внутренняя энергия первична по отношению к темпу времени, а собственное время любой материальной системы изменяется в связи с изменением ее внутренней энергии. Теперь, мне кажется, настало время сделать некоторые пояснения. Я опасаюсь, что, постоянно подчеркивая роль и значение внутренней энергии в формировании собственного времени тел, я невольно мог создать впечатление, что теория относительности вообще не заметила участия внутренней энергии в формировании времени. Это, конечно, не так. В общей теории относительности каждая материальная система порождает гравитацию. Гравитационные поля, способные ощутимо влиять на тела, оказавшиеся в этих полях, создаются гравитирующими массами, т. е. массивными телами. При этом само гравитационное поле создается не только потому, что тело обладает большой массой, но и потому, что оно обладает внутренней энергией и энергией движения. Иная ситуация возникает, когда определяют собственное время тел. Ортодоксы считают необходимым и достаточным для этого знать только, в каком гравитационном поле находится тело и с какой скоростью оно движется. В лучшем случае, учитывается взаимодействие фонового гравитационного поля и поля гравитации самого тела (например {23}). Тут и запрятана некая тонкость. Дело в том, что собственное гравитационное поле каждого тела порождено как массой тела, так и той частью внутренней энергии тела, которая в виде излучения участвует во взаимодействии тела с внешней средой, тем самым воздействуя на кривизну пространства. Возникает вопрос: ограничивается ли этим участием роль внутренней энергии в формировании собственного времени тела? С позиции рассматриваемой гипотезы ответ будет отрицательным. Поскольку понятно, что если учитывать только ту часть внутренней энергии, которая влияет на кривизну пространства (через излучение), то большая часть внутренней энергии окажется неучтенной, т. е. как бы непричастной к формированию собственного времени тела. Такое понимание роли внутренней энергии тела в формировании его собственного времени является ошибочным с позиции предлагаемой гипотезы. Поэтому-то, определяя собственное время любого тела, необходимо учитывать не только его скорость, фоновое гравитационное поле и взаимодействие этого поля с собственным полем тела, но и полную величину внутренней энергии тела. В этом утверждении и заключается, вероятно, некоторая новизна гипотезы локально-когерентного времени. Вывод: темп собственного времени в каждой материальной системе, при прочих равных условиях, зависит от интенсивности внутренних процессов в самой системе. Внутренняя энергия тела является одним из главных времяформирующих факторов, наряду с гравитацией и скоростью движения тела. Прошу обратить внимание на два момента. Во-первых, темп времени в чайнике изменился, но при этом два времяформирующих фактора, принятых в теории относительности, оставались неизменными: чайник по-прежнему покоился относительно Земли и по-прежнему притягивался к ней с почти неизменной силой. (Почему «почти» — об этом вы узнаете ниже, когда пойдет речь о взаимозависимости массы и темпа времени). Во-вторых, собственное время чайника изменилось под воздействием внутренних причин, которые, в свою очередь, обусловлены внешним воздействием — подводом к чайнику тепла извне. Вывод: во Вселенной, наряду с кинетической неоднородностью времени, обусловленной относительностью скоростей движения материальных систем, проявляется и динамическая неоднородность времени, обусловленная неоднородностью энергетического состояния различных систем. Уделяя внутренней энергии центральное место в разрабатываемой гипотезе, мы обязаны хотя бы приблизительно показать, что стоит за этим термином. Энергия вообще, как трактуют ее словари, — это общая мера различных форм движения материи. Лауреат Нобелевской премии Ричард Фейнман пишет: «Энергия существует во всевозможных формах… Есть энергия, связанная с движением (кинетическая энергия); энергия, связанная с гравитационным взаимодействием (она называется потенциальной энергией тяготения); тепловая, электрическая и световая энергия; энергия упругости в пружинах; химическая энергия и, наконец, энергия, которой обладает частица в силу одного своего существования, — эта энергия прямо зависит от массы. Обнаружил ее, как вы знаете, Эйнштейн. Я имею в виду… его соотношение Е=mс2. Итак, существует много видов энергии, и мы кое-что знаем об их взаимосвязи… Например, то, что мы называем тепловой энергией, в значительной степени лишь кинетическая энергия движения частиц в теле. Упругая энергия и химическая энергия имеют одинаковое происхождение — силы взаимодействия между атомами… эти взаимодействия являются комбинацией двух вещей — электрической энергии и опять-таки кинетической… Ядерная энергия не выражается через другие виды энергии; сегодня я могу сказать только, что она — результат ядерных сил…» {43} Как видите, разобраться в «энергиях» не так просто. Не случайно я выразил надежду хотя бы приблизительно показать, что представляет собой, из чего складывается внутренняя энергия. Опять-таки обратимся кумному словарю. «Внутренняя энергия — (это) энергия тела, зависящая только от его внутреннего состояния; складывается из энергии беспорядочного (теплового) движения атомов или молекул и энергии межмолекулярных и внутриатомных движений и взаимодействий». Мы будем считать внутренней энергией все виды энергии, зависящие только от внутреннего состояния тела, т. е. за вычетом потенциальной энергии тяготения, именно потому, что она зависит от положения тела над некоторым уровнем, т. е. причины «внешней», и определяет, в конце концов, величину гравитационного взаимодействия. Такое деление, конечно, условно, поскольку потенциальная энергия влияет на многие виды «чисто» внутренней энергии, а изменение внутренней энергии в какой-то мере изменяет силы гравитационного притяжения. Что дает нам представление об участии внутренней энергии каждого тела в формировании его времени? Во-первых, конечно, мы в концептуальном или даже в мировоззренческом плане по-новому видим природу, или физическую сущность, времени. Во-вторых, становится более конкретным, более содержательным само понятие собственного времени материальной системы. Оно перестает зависеть только от причин внешних — состояние самого тела становится полноценным фактором, определяющим происхождение собственного времени тела. Я хотел бы специально подчеркнуть, что не являюсь первооткрывателем, заметившим, что внутренняя энергия тел как-то связана с их собственным временем. Еще первый президент Украинской Академии наук академик В. Вернадский писал: «…измерение времени в наиболее глубокой и точной своей части основано не надвижении, а на изменении свойств тела или явления». Совершенно определенно утверждал А Вейник, что «время… — это не полная абстракция, а мера скорости или интенсивности процессов». Более того, именно А. Вейник доказал это экспериментально. Например, он установил, что электронные часы замедляют ход времени, когда рядом находится погруженный в глубокий сон человек. Н. Козырев, исповедуя совершенно другое концептуальное понимание времени, непрерывно, как заклинание, повторяя, что время — это некая особая природная субстанция, не мог, тем не менее, не отметить, что определенные физические или химические процессы в самих телах или вблизи от них определенно влияют на собственное время этих тел. В первой главе уже отмечалось, как близко к пониманию сущности времени подошли некоторые современные ученые. Например, В. Копылов {24} связывает собственное время материальных систем с их энергонасыщенностью, понимая под этим «условия взаимодействия любой вещественной структуры с физическим вакуумом». То, что он неправильно понимает, как именно изменение насыщенности энергией влияет на изменения собственного времени тел, в данном случае не имеет значения. Главное в том, что внутреннюю энергию тел он рассматривает как один из времяформирующих факторов. Ю. Белостоцкий {23} удачно (с моей точки зрения) формулирует понятие энергии: «Энергия — это происходящий во времени процесс превращения вещества в поле». Земное время Белостоцкий связывает только с процессом излучения массы от Солнца к Земле, и с этим, конечно, трудно согласиться, но этот поток преобразует внутреннюю энергию Земли. Безусловно, зародыши такого реляционного понимания времени, в котором время и внутренняя энергия функционально связаны, встречаются и в других работах и, наверное, восходят к Р. Бошковичу. Итак, опираясь не только на интуицию и логику, а также и на опыт наших предшественников, можно утверждать, что темп времени в каждом теле, при прочих равных условиях, может изменяться под влиянием изменяющейся энергии внутренних процессов в этих телах. Как уже отмечалось, собственное время любого тела зависит от темпа времени, который присущ этому телу. Повторим еще раз, что под темпом времени здесь и далее понимается величина, обратная интервалу времени между фиксируемыми моментами времени в совмещенной с телом системе отсчета или в инерциальных системах. В таком случае: собственное время каждой материальной системы Вселенной является мерой плотности внутренней энергии и гравитационного воздействия в этой системе и зависит от скорости ее движения относительно выбранной системы отсчета. Я пока не касаюсь вопроса процедуры сравнения собственного времени разных систем и вообще количественной стороны вопроса. Я утверждаю только, что, при прочих равных условиях, собственное время в различных материальных системах может быть различным в зависимости от величины их внутренней энергии. С учетом того, что энергонасыщенность каждой материальной системы и гравитационное воздействие на нее в общем случае различны, можно утверждать, что: время во Вселенной неоднородно и объективно отражает интенсивность внутренних процессов, происходящих в гравитационном поле во всех ее Материальных системах. Разумеется, интенсивность внутренних процессов любой системы определяется ее энергосостоянием. О каких процессах идет речь? Прежде всего и главным образом — это процессы тепловые (кинетические), процессы взаимодействия элементарных частиц, а также процессы, протекающие на атомном и молекулярном уровнях. Понятно, что этим процессам соответствуют различные формы энергии. Что касается макродвижений (перемещений вещества), то это вторичное проявление внутренних процессов, и в частном случае они могут служить мерой интенсивности процессов, происходящих на микроуровне. Как сегодня официальной физикой понимается собственное время материальной системы? Если тело покоится, то его собственное время в общем случае зависит от поля тяготения самого тела, от поля тяготения внешних масс и, очевидно, от их взаимодействия. Это значит, что при условии идентичности вышеназванных факторов для неких двух покоящихся тел собственное время у них будет одинаковым… даже если одно из них давно остыло почти до абсолютного нуля, а второе излучает энергию мощно, как квазар. Не странно ли это? В соответствии с нашей гипотезой такое представление ошибочно. Равенство собственного времени двух или нескольких покоящихся тел при условии идентичности гравитационного воздействия на них — это частный случай, он возможен только при условии равенства внутренней энергии этих тел. Прежде чем попытаться представить математическую зависимость собственного времени некоего тела от различных физических факторов, введем условия, ограничивающие применимость формулы. Область, в которой может быть использована зависимость, ограничена гравитационно связанными системами. То есть, пригодна для определения времени подсистем, которые вращаются вокруг центрального тела системы. Подсистемами являются наша Земля относительно Солнца, Солнце относительно Галактики. Подсистемами являются люди, кошки, кровати, автомобили, дома, атомные реакторы и… шарики для игры в пинг-понг. Подсистемами можно считать и отдельные горы, моря, даже условно выделенные локальности внутри самой Земли. Все субъекты Земли имеют большое или маленькое собственное поле тяготения, и все гравитационно связаны со всеми телами системы. Однако наиболее существенное гравитационное воздействие подсистемы испытывают со стороны центрального тела системы. Это естественно, поскольку оно всегда наиболее массивно, например, масса Солнца более чем в 700 раз превышает суммарную массу всех планет системы. Земля как центральное тело своей системы также значительно превышает по массе все гравитационно связанные с ней подсистемы. Определяя темп собственного времени любой подсистемы, мы исходим из двух новых постулатов: постулата о прямой пропорциональности темпа времени и плотности внутренней энергии; постулата о прямой пропорциональности темпа времени и мощности энергетического потока, излучаемого подсистемой (оба допущения приняты в рамках гипотезы локально-когерентного времени). А также постулата, принятого в теории относительности, о прямой пропорциональности темпа времени обратной величине гравитационной силы. Определяя темп собственного времени земных подсистем, мы исходим также из трех условий: во-первых, в качестве системы отсчета принимаем Землю, и, таким образом, большинство подсистем можно считать находящимися в состоянии покоя. Во- вторых, мы пренебрегаем гравитационным воздействием от масс внешних по отношению к системе Земля — Луна. И в третьих, темп времени Земли условно принимаем равным единице, при этом приравниваем его к некой постоянной эталонной величине. С учетом всех принятых допущений и ограничений формула не должна противоречить принципу сохранения энергии. где t — суммарная внутренняя энергия тела, включающая в себя энергию различных форм; G — гравитационная постоянная; МmT — соответственно масса центрального тела (Ц.Т.) системы, например Земли, и подсистемы, например тела на поверхности Земли; r — расстояние между центрами тяжести Ц.Т. и подсистемы; #961; — расстояние от подсистемы до оси вращения Ц.Т.; #969; — скорость вращения тела относительно центра тяжести Ц.Т.; #946; — угол между осью вращения Ц.Т. и направлением силы притяжения тела к центру тяжести Ц.Т.; V — объем тела; а Численная величина «к» может быть определена путем подстановки в формулу 2.1 конкретных параметров физических величин, определяющих условия, в которых находится квантовый генератор, используемый для получения и хранения эталонной секунды. Это, конечно, не означает, что только при таких условиях квантовый генератор будет излучать волны определенных параметров. Но это означает, что внутренняя энергия, соответствующая таким условиям, не противоречит получению и хранению эталонной секунды. Следовательно, величины параметров, определяющих внутреннюю энергию, могут быть использованы для подстановки в формулу (2.1), при этом величина tT0 и будет равна единице. Несколько дополнительных пояснений к формуле. Сумма всех проявлений внутренней энергии отнесена к объему, занимаемому телом, что дает возможность перейти к удельным показателям — сравнивать плотность внутренней энергии у тел различных размеров. Введением коэффициента аR я хотел показать, что гравитационное поле в окрестности тела формируется не только в связи с взаимодействием фонового поля (от внешних гравитирующих масс) с собственным гравитационным полем тела, но и в связи с энергетическим взаимодействием тела и среды. При этом чем выше энергонасыщенность в локальности возле тела, тем меньше в ней кривизна пространства. Значение аR — 1 означает, что энергетическое взаимодействие тела и среды незначительно и величина локального гравитационного поля (локальная кривизна) определяется только взаимодействием масс. В частности, величина внутренней энергии в теле не только непосредственно влияет на собственное время тела, но влияет и опосредованно путем внесения коррективов в показатели гравитационного поля. Увеличение потока энергии вовне «разглаживает» кривизну пространства в локальности тела и тем самым снижает эффект замедления времени от определенной кривизны пространства, обусловленной взаимодействием масс. Вероятность такого эффекта (как следствие динамического изменения внутренней энергии) и вынуждает нас ввести в формулу коэффициент а Индекс «i» при Eu указывает на то, что внутренняя энергия тела в общем случае равна сумме энергий различных форм, i = от 1 до n, где n — количество энергий различных форм. Физический смысл формулы (2.1) просматривается без особых затруднений. Темп собственного времени любого тела (любой подсистемы) определяется, во-первых, как зависимость от внутренней энергии в теле, во-вторых, как зависимость от гравитационных отношений системы (или центрального тела системы) и подсистемы и, наконец, в-третьих, как зависимость от локального искривления пространства-времени. Знаменатель в нашей формуле — это не что иное, как сила гравитационного притяжения подсистемы, направленная к центру тяжести центрального тела системы (в частности, Земли). Часть знаменателя со знаком минус — это центробежная составляющая силы тяжести. Хочу также обратить внимание на то, что в числителе и знаменателе формулы отражены различные проявления материи. В числителе как бы присутствует энергия в проявленном (свободном) состоянии, т. е. в виде поля-излучения. Это, в конечном счете, и определяет плотность внутренней энергии в теле. В знаменателе — та часть энергии, что содержится в веществе и определяет гравитационные свойства масс. Такое понимание физического смысла формулы позволит нам впоследствии сформулировать, пожалуй, самое обобщенное определение времени. Если некое тело, являясь земной подсистемой, не только вращается (вообще движется) вместе с Землей, но и перемещается где tT0 — относительный темп времени движущегося тела; mT0 — масса покоя подсистемы; #957; — скорость движения тела относительно Земли; с — скорость света в вакууме. То есть в соответствии с представлениями теории относительности скорость движения тела замедляет его собственное время в связи с ростом массы тела пропорционально скорости. (Ощутимо это только при околосветовых скоростях. Например, если скорость тела составляет 10 % скорости света, то его масса превышает массу покоящегося тела всего на 0,5 %. Если скорость тела равна 90 % скорости света, то его масса уже в 2 раза превышает нормальную массу.) относительно Земли и скорость этого относительного движения близка к скорости света, то формулу (2.1) можно выразить в соответствии с представлениями релятивистской физики: Проблема определения величины внутренней энергии заключается в том, что самым разнообразным формам движения материи соответствуют различные типы энергетических проявлений. В общем случае четыре основных взаимодействия в материальном мире (сильное, электромагнитное, слабое и гравитационное) ответственны за характер и величину внутренней энергии в различных телах… Попытка учесть все типы энергопроявлений сделала бы задачу, стоящую перед нами, неразрешимой. К счастью, сама природа позаботилась о некоторой суммарности различных проявлений внутренней энергии. Это, например, теплосодержание материальных систем. Мы понимаем, что температура тела может быть повышена в результате самых разнообразных физико-химических процессов в системе (нагрев тела, деформация тела…), но также ясно, что если удастся воспользоваться безусловной функциональной зависимостью между внутренней энергией тела и ее отражением в количественном виде, например через теплосодержание, то, по крайней мере, для тел, которые определенно проявляют себя как термодинамические системы, проблема будет решена. И тогда, может быть, в практическом плане, нас не очень будет волновать вопрос: а что именно происходит в этих материальных системах. (Обратим внимание, между прочим, и на то, что между теплосодержанием тел и их светимостью также существует определенная зависимость.) Что касается космических объектов, то наиболее подходящим критерием для оценки их внутренней энергии может быть их излучение. Конечно, особенно это относится к звездам, которые находятся в лучистом равновесии, при котором энергия в звезде переносится излучением. Но в любом случае нас не должно смущать, что излучения бывают самые разнообразные: излучаются частицы заряженные и нейтральные, тяжелые и бестелесные, разной природы и пр., пр. Известные сегодня зависимости между тем или иным излучением и причинами, их порождающими, должны быть приспособлены для адекватной оценки величин внутренней энергии. Самым главным (а для большинства случаев и вполне достаточным) фактором при оценке величины внутренней энергии макротела можно считать температуру тела. Сегодня мы не умеем измерять темпы времени различных тел. И это, конечно, плохо, и, конечно, это отражает уровень развития человечества, но и трагедии в этом тоже нет. Не умели же когда-то люди (и в общем-то совсем недавно) измерять температуру. Говорили: это холоднее, а это горячее… И не умирали от отсутствия «градусников». Вероятно, по крайней мере, в первое время не удастся обойтись одной шкалой, одной методикой, единым критерием. Слишком велика разница между квазаром и Луной, между Луной и шариком для пинг-понга. Тем не менее, вопрос о собственном времени «шарика» для пинг-понга возникает. Кстати, если изучать настоящий шарик на поверхности Земли, т. е. в определенном месте, то можно пренебречь зависимостью полной массы шарика от его скорости относительно Земли — слишком мала скорость. При ничтожном собственном поле тяготения шарик, конечно, будет «чувствовать» силу тяжести Земли, но все это не столь важно, так как у него очень малая величина активной внутренней энергии. Он почти не излучает, он не характеризуется внутренним давлением, он холоден, а точнее, имеет температуру окружающего воздуха. Если ночью шарик окажется в зарослях тропического леса, то ни один самый голодный удав на него не обратит внимание — он не излучает тепло. Темп времени шарика для игры в пинг-понг будет практически неотличим от темпа собственного времени Земли. Аналогичные результаты мы получим, если исследуем множество других окружающих нас предметов и сооружений: домов, кроватей, низкоэнергетических машин и устройств и пр. Большинство окружающих нас тел будут иметь время, практически не отличимое от времени системы. Тот, кто, прочтя это место, успел подумать: «Тогда зачем вся эта затея, зачем гипотеза неоднородного времени?», не должен огорчаться. Нас окружают очень активные космические тела, а рядом с нами энергоемкие научно-технические и технические творения рук человеческих, везде элементарные частицы, наконец, рядом живые существа с их уникальной способностью изменять свою внутреннюю энергию. …Передо мной сейчас наш домашний телевизор на массивной деревянной тумбе. (Диктор рассказывает, как американский президент поскользнулся и упал с лестницы; повествует диктор об этом как-то странно — почти весело…) Так вот, два различных субъекта Вселенной: живой, полный сил и энергии телевизор и «мертвая», давно отшумевшая зеленой листвой тумба. Конечно же, теоретически у них должно быть различное собственное время. Вопрос лишь в том, можно ли обнаружить это различие и можно ли извлечь какую-то пользу из этого различия? Не умея определять их темп времени, мы можем только гадать, за какой срок сверхточные часы, спрятанные в телевизоре, уйдут вперед на одну секунду от показаний часов тумбы. За год или за сто лет, а может быть, и за тысячи и за миллионы? Можно ли для практических целей упростить формулы (2.1) и (2.2)? Очевидно, да. В условиях Земли, когда какая-либо подсистема покоится на ее поверхности, не имеет смысла учитывать ее скорость относительно Земли — она, как правило, очень далека от скорости света. Для каждого конкретного места будут постоянными и масса Земли, и центробежная составляющая силы тяжести. Перепишем формулу (2.1) в упрощенном виде, исключив составляющую #961;#969; Тогда формула (2.1) примет вид: Формула (2.3), несмотря на частный характер условий, которым она соответствует, очень удобна для последующего анализа как следствий рассматриваемой гипотезы, так и для объяснения некоторых загадок и парадоксов времени. То, что время каждой материальной системы всегда относительно, это после Эйнштейна никого уже не удивляет. Но теперь, если принять нашу гипотезу, оно может быть неодинаковым и при совпадении всех времяформирующих факторов, вытекающих из теории относительности. И это, не снимая старых проблем, создает новые. Дело в том, что все тела взаимно влияют друг на друга — взаимодействуют между собой. И не только в пределах системы — на них влияет внешний мир ближних систем высшего порядка и, наконец, часть Вселенной, в локальности которой они находятся. Ученые давно и уверенно утверждают, что вообще говорить о времени в различных точках пространства имеет смысл только как об «определении порядка событий, связанных между собой материальными взаимодействиями». Безусловно соглашаясь с этим, согласимся и с тем, что с позиций нашего понимания времени все эти взаимодействия с неизбежностью должны влиять на собственное время различных локальностей. Можно утверждать, что в потоках взаимодействий участвуют элементарные частицы и их совокупности (вещество), а также материальные поля. В результате в каждой подсистеме (и в системе в целом) могут изменяться суммарная энергия их внутренних процессов и суммарное гравитационное воздействие. Каждая подсистема непрерывно и ощутимо буквально бомбардируется частицами разных энергий, разных свойств. Но во Вселенной идет и непрерывный обмен веществом, что влияет непосредственно на изменение масс и гравитационных сил. Случаются (так полагают специалисты) грандиозные взаимодействия, когда нейтронные звезды или черные дыры всасывают в себя гигантские газопылевые облака и звезды, а центры галактик способны поглотить и звездные системы — галактики. Но если так, если в природе идет между материальными субъектами постоянный обмен энергиями и массами и это изменяет их темп собственного времени, то мы вправе ввести понятие псевдопотока времени (или псевдовременного потока). Термин «псевдо» в значении «как бы» я употребил не из желания «обнаучить» проблему. Вопрос принципиальный. Если бы я воспользовался термином «поток времени», то меня следовало бы заподозрить в привязанности к субстанциальному пониманию времени. Я же твердо убежден, что времени как субстанции, независимой (даже частично) от материальных отношений в природе, не существует, т. е. я сторонник реляционной концепции (как в части происхождения времени, так и во взаимоотношениях времени и вещества), а потому никаких «потоков времени» быть не может. Иное дело, что обычные носители взаимодействий (частицы, вещество, поля) сами могут иметь различное собственное время. И если некое тело поглощает, например, поток частиц, собственное время которых резко отлично от времени тела, то создается впечатление, что в это тело входит поток времени. Это обманчивое впечатление очень распространено. В действительности — все проще. Даже в том случае, когда одна частица, сталкиваясь с другой, изменяет ее собственное время, при этом происходит не передача порции времени от одной частицы к другой, а одно из двух: либо у второй частицы изменяется ее внутренняя энергия, либо она изменяет скорость своего движения и, как следствие этого, изменяется ход времени. Само по себе время ниоткуда не вытекает и никуда не втекает. Такого времени просто нет. Тем не менее, поскольку взаимодействия участвуют в изменении собственного времени тел, мы должны ввести понятие псевдовременного потока. Псевдовременной поток — это та часть материальных носителей взаимодействия, которые, поглощаясь или излучаясь материальной системой (телом), в общем случае изменяют ее внутреннюю энергию, массу и гравитацию. Следовательно, каждая материальная система обладает как своей собственной массой и создает индивидуальный поток гравитации, а также обладает собственным временем и создает свой индивидуальный псевдопоток времени, направленный вовне. Все материальные системы, таким образом, взаимозависимы. Как же оценить эту взаимозависимость? Чтобы не быть «раздавленным» множеством факторов, влияющих на время конкретной подсистемы, выход только один — ввести ограничения. Но, разумеется, не произвольные, а с учетом весомости факторов, участвующих во взаимодействиях. В этом смысле, как правило, гравитация наиболее существенно влияет на собственное время любой подсистемы. Оценивая собственное время отдельных субъектов Вселенной, помня о том, что в каждой точке (каждой локальности) Вселенной собственное время в принципе различно, мы должны ввести новые определения. Время будем считать когерентным, если в определенной локальности оно одинаково (едино), т. е. характеризуется постоянством своих показаний или постоянной закономерностью их изменений. Локально-когерентным будем считать собственное время (или темп собственного времени) тела (локальности, подсистемы), обладающего когерентным временем. Квазикогерентным будем считать собственное время (или темп собственного времени) системы, состоящей из подсистем, каждая из которых в общем случае обладает своим отличающимся локально-когерентным временем. Систему, состоящую из совокупности тел, будем считать автономной, если все другие окружающие систему тела, настолько слабо гравитационно взаимодействуют с ней, что неучаствуют в общем движении системы вокруг центра ее вращения. Такая система обладает условно единым (усредненным), т. е. квазикогерентным собственным временем. Может возникнуть вопрос о целесообразности введения специального термина «квазикогерентное время», если существует термин «координатное время». Понятия, обозначаемые этими терминами, заметно отличаются. Время координатное «совпадает с собственным временем… часов, которые находятся в центре соответствующей системы пространственных координат». Усредненное — квазикогерентное время реальной системы может совпадать с координатным временем только в частном случае, когда центр масс системы совмещен с центром системы координат, а сама система идеально однородна по энергосодержанию и плотности вещества, из которого она состоит. С введением понятия «квазикогерентное время» необходимо вернуться к понятию «мировое время», которое принято сегодня в теории относительности. Вот что утверждается в фундаментальном труде Л. Ландау и Е. Лифшица {44}: «Гравитационное поле называют постоянным, если можно выбрать такую систему отсчета, в которой все компоненты метрического тензора не зависят от временной координаты… последнюю называют в таком случае мировым временем (выделено мною. — А.Б.)». А чуть ниже: «…строго говоря, постоянным может быть лишь (выделено мною. — А.Б.) поле, создаваемое одним телом. В системе нескольких тел их взаимное гравитационное притяжение приводит к возникновению движения, в результате чего создаваемое ими поле не может быть постоянным». Далее тоже написано очень много интересного, но, может быть, достаточно и того, что мировое время может существовать лишь в постоянном гравитационном поле, а такое поле может быть, линь если в системе одно тело. Естественно, мы вправе задать себе вопрос, а как же быть с Миром, если в нем тел несколько больше, чем одно. Или иначе: что понимали уважаемые авторы под словами «строго говоря»? Нам снова предлагается модель, не имеющая ничего общего с действительностью, во имя сохранения некой логики. Вместо мифического мирового времени теории относительности мы предлагаем время квазикогерентное, т. е. усредненное время гравитационно связанных систем (в том числе, возможно, и такой, как Вселенная), каждая подсистема (тело) которой имеет свое собственное время. Чем ближе друг к другу показатели внутренней энергии всех подсистем и чем более однородно гравитационное поле в пределах системы, тем однороднее время. В каждой условно когерентной системе есть точка, в которой темп собственного времени, присущий этой точке (этой локальности), совпадает с усредненным темпом времени всей системы. Назовем эту точку — точкой когерентности данной системы. В квазикогерентных системах, например на Земле, большинство макрообъектов как природного, так и техногенного происхождения будут иметь очень близкое собственное время. Собственное время этих подсистем будет близким как потому, что у них сопоставима энергонасыщенность, так и потому, что самым весомым фактором, участвующим в их гравитационном взаимодействии, будет единая для всех величина — масса Земли. Темп времени таких подсистем будет близким, но не идентичным. И тут напрашивается достаточно полная аналогия с гравитацией (впрочем, это более чем аналогия, поскольку гравитация участвует в формировании времени). В разных местах на поверхности планеты, над и под землей она различна, и не только потому, что Земля сплюснута у полюсов, а на самой Земле есть впадины и горы, — гравитация зависит также от концентрации — перераспределения масс в недрах Земли, от координаты (широты) подсистемы, в которой измеряется сила тяжести, от времени суток, от многовекового замедления вращения Земли (приливные эффекты) и т. п. При движении (мысленном переносе) нашей подсистемы вглубь Земли гравитационное воздействие на нее постоянно изменяется. Установлены эмпирические закономерности. Например, до глубины 20–30 км сила притяжения медленно возрастает, затем начинает убывать пропорционально первой степени радиуса Земли (в центре Земли обращается в нуль). При удалении подсистемы от поверхности Земли сила притяжения убывает, а центробежная сила возрастает. Это справедливо для тел, участвующих в общем с Землей вращении вокруг ее оси. Иными словами, любая материальная локальность Земли испытывает постоянно изменяющееся гравитационное воздействие, но мы живем и, как правило, не замечаем неоднородности гравитации, хотя это давно и твердо установленный факт. Еще в 1774 г. шотландец Маскелин обнаружил отклонение от вертикали отвеса, вызванное гравитационным притяжением от расположенной рядом горы. А в 1797 г. английский физик Кевендиш впервые наблюдал гравитационное притяжение двух тел в лабораторных условиях. В быту мы не замечаем этого потому, что неоднородность гравитации мала, и потому, что в использовании малых перепадов гравитации нет практической (бытовой) необходимости. Иное дело некоторые области науки и техники, где не учитывать неоднородность гравитации уже нельзя (например геофизика). Также и реальное физическое время — на поверхности Земли оно практически одинаково, т. е. для практических целей однородно, но теоретически различно — различно в каждой ее точке. Особое место во взаимодействиях подсистем и систем занимают живые существа. Это представляется очевидным, если не забывать о втором допущении нашей гипотезы, т. е. о том, что энергия внутренних процессов тела является одним из времяформирующих факторов. Академик Вернадский особо подчеркивал способность живой материи «регулировать проявления энергетических процессов». Подтверждений этому множество и в официальной науке, и в полуофициальной биоэнергетике. Банальный пример: некоторые йоги замедляют частоту дыхания и ритм ударов сердца, менее банальный — в состоянии летаргического сна старение тела как бы приостанавливается и, наоборот, известны ужасные случаи, когда интенсивность внутренних процессов человеческого тела столь ускорена, что уже в детстве несчастные, подверженные этому «недугу», выглядят, как глубокие старцы… («старцы», которые живут не более 15 лет).[17] Напомним, что и теория относительности утверждает, что «каждый индивидуум имеет свой собственный масштаб времени», но зависит он только «от того, где этот индивидуум находится и как он движется». То есть зависит от гравитационного поля и скорости, а значит, предполагается (без нашей гипотезы), что индивидуальные масштабы времени в пределах Земли практически одинаковы. Своеобразны и отношения собственного времени элементарных частиц с квазикогерентным временем системы, тем более что для некоторых из них (нейтрино, электроны, фотоны) само понятие система — подсистема нарушается. Такие частицы путешествуют через пространство-время, переходя из одной автономной системы в другую, а нейтрино буквально пронизывают плотные материальные системы. Время Земли можно считать (с точностью, зависящей от определения когерентности) независимым, например от времени Юпитера, так как каждая из этих планет вращается вокруг своей оси и ни Земля, ни Юпитер не участвуют во взаимном вращении относительно друг друга. Но и Земля, и Юпитер, и другие большие и малые планеты Солнечной системы находятся в гравитационной зависимости от Солнца, вращаются вокруг центра его массы, и потому вся Солнечная система обладает условно когерентным временем. Такой подход справедлив для Солнечной системы, но справедлив и для нашей Галактики, вокруг центра которой вместе с нашей Солнечной системой участвуют в гравитационном движении другие системы. Это справедливо для объединения галактик… вплоть до усредненного времени наблюдаемой Вселенной. Насколько при этом мы огрубляем определение собственного времени отдельных объектов? Рассмотрим для примера систему «Земля — Луна» со всеми их спутниками и со всеми телами и внутри их, и на поверхности. Определяя квазикогерентное время этой системы, мы, по определению, не будем учитывать притяжение не только других планет Солнечной системы, но и самого Солнца. И что же? Несмотря на то, что Солнце обладает огромной по сравнению с Землей массой, сила тяжести от Солнца на поверхности Земли составляет всего 0,1 % от земного притяжения. Относительно малыми будут и усилия притяжения на поверхности Земли от других планет Солнечной системы; так, расстояние до Юпитера примерно в 5 раз больше, чем до Солнца, масса его в 1000 раз меньше солнечной. Ясно, что силы притяжения от Юпитера на поверхности Земли будут ничтожно малы. Но, в общем случае, определяя квазикогерентное время системы в целом, т. е. учитывая суммарный вклад подсистем, мы обязаны учитывать и взаимное влияние подсистем друг на друга, и влияние внешних систем на каждую подсистему и на систему в целом. Представляет безусловный интерес попытка определить хотя бы ориентировочно, какой из субъектов Вселенной обладает Что касается наиболее высоких темпов времени, то на роль их носителей претендуют как локальности, в которых происходят «мгновенные» взрывоподобные освобождения энергии, так и локальности глубокого космического вакуума. В первом случае, при кажущейся очевидности, ситуация достаточна неопределенна. Хотя внутренняя энергия в локальности, где произошел динамический переход части энергии вещества в энергию излучения огромна, при этом очень весомы и факторы, способствующие замедлению времени. И если энергия, освободившаяся, например, при аннигиляции частиц или взрывах сверхновых звезд, безусловно, способствует мгновенному росту темпа собственного времени в некоторой локальности, то возникающие при этом же огромные давления (ударные волны), безусловно, приводят к увеличению кривизны пространства, а следовательно, и к замедлению темпа времени в той же локальности. Условия космического вакуума характеризуются минимальным уровнем энергии и почти полным отсутствием материи в виде вещества. В этих условиях гравитационные поля проявляют себя очень слабо, а следовательно, и кривизна пространства нулевая. Если в вакууме окажется частица, обладающая внутренней энергией, то она практически не будет испытывать никакого гравитационного воздействия. Что касается собственного гравитационного поля элементарных частиц, то они исчезающе малы. Вот, например, что пишет Пол Девис: «Возможно, наиболее удивительной особенностью гравитации является ее малая интенсивность. Величина гравитационного взаимодействия между компонентами атома водорода составляет 10 Иными словами, частицы в условиях космического вакуума испытывают наименьшее гравитационное воздействие как от собственного поля тяготения, так и от внешних масс среди всех субъектов Вселенной. С другой стороны, субъекты микромира (от субчастиц до ядер атомов и атомов) обладают высокой внутренней энергией. Насколько огромна внутренняя энергия, заключенная внутри ядра, стало более понятно в 60-х годах, когда была предложена кварковая модель ядра. Можно сделать вывод, что субъекты микромира, обладая определенной внутренней энергией при почти нулевом гравитационном воздействии, обладают максимальным темпом собственного времени. Таким образом, с определенной долей уверенности можно утверждать, чтомаксимальным темпом времени обладают локальности межгалактического вакуума и, может быть, объемы пространства, в которых происходит взрывоподобное превращение энергии вещества в энергию излучения. …И сразу же появляется искушение установить, каков же минимально возможный темп времени во Вселенной? Впрочем, сколь ни велико это искушение, необходимо задержаться, чтобы дать некоторые пояснения. Во время одного из обсуждений первой книги {2} мне был задан вопрос: на каком основании я говорю о том, что внутренней энергией обладают все элементарные частицы. Я ответил, что внутренней энергией с неизбежностью должны обладать все частицы, имеющие внутреннюю структуру. После этого мне не без удовольствия напомнили, что, как известно из учебников, электрон — это точка, имеющая электрический заряд. Сегодня мне предоставляется возможность сообщить следующее: вряд ли правильно рассматривать элементарные частицы без учета их взаимодействий, более того, есть хотя и экстравагантное, но достаточно серьезное мнение о том, что изолированные частицы (по крайней мере, некоторые) вообще не могут быть обнаружены, т. е. их как бы и нет, без взаимодействий. Взаимодействия настолько жестко связаны с самими частицами, что частицы правильнее рассматривать как относительно изолированные комплексные системы: частица плюс микрочастица или частица плюс поле. При таком подходе сомнения в том, что частицы обладают внутренней энергией, должны отпасть. Что касается электрона, то кроме того, что, «известно из учебников», есть серьезные работы в области квантовой электродинамики, в соответствии с которыми движущийся электрон — это сгусток заряженной материи, неотделимой от его собственного поля… {34, 35} А вот точка зрения О. Зайцева: «Микрочастица не имеет четко очерченных границ, ее нельзя представить в виде крошечного шарика, окруженного виртуальным облаком частиц — переносчиков взаимодействий. Любая микрочастица — это определенным образом организованное скопление фотонов. Пространственной границей покоящейся микрочастицы может считаться поверхность объемной фигуры (не всегда правильной геометрической формы), вне которой оказываются нулевыми все поля частицы, за исключением гравитационного»{45}. Что касается самого фотона, то проблема наличия у него внутренней энергии будет оставаться дискуссионной до тех пор, пока не будет окончательно решен вопрос о том, что это вообще такое. В настоящее время понятие внутренней энергии фотона, вероятно, может быть увязано с его взаимодействиями и с энергией вихревого вращения фотона. Так какой же у Вселенной может быть минимальный темп времени? Интуиция и все тот же здравый смысл подсказывают, что субъекты, обладающие самым замедленным темпом времени, должны быть среди небесных тел, испытавших коллапс, например среди нейтронных звезд — объектов, обладающих огромной плотностью и гигантскими силами притяжения. Здравый смысл говорит также, что очень незначительной внутренней энергией должны обладать «мертвые» космические тела, которые охладились до температуры, близкой к абсолютному нулю (-273 °C). Казалось бы, сочетание огромной плотности и сверхнизкой температуры у тел, переживших коллапс, делает их явными лидерами среди претендующих на роль субъектов с минимальным темпом времени. Но не все так просто. Даже при такой немыслимо низкой температуре внутренняя энергия в этих телах не равна нулю. И это, на первый взгляд, удивительно, ведь все движения внутри таких тел должны были бы замереть (тепловое движение равно нулю). Но даже в этих телах электроны совершают некие движения… Нет ли тут противоречия с теорией? Нет. «Оказывается, частицы определенного типа (например электроны, протоны и нейтроны) обладают тем свойством, что в ограниченном объеме в низшем энергетическом состоянии может находиться лишь строго определенное количество частиц. Если это число превышено, то даже при абсолютном нуле температуры в системе будут присутствовать и частицы с более высокой энергией…» Это явление было открыто Вольфгангом Паули. (Принцип исключения Паули гласит: «Две одинаковые частицы со спином 1/2 не могут (в пределах, которые даются принципом неопределенности) обладать одновременно и одинаковыми положениями в пространстве, и равными скоростями».) Вот почему давление в системе, пребывающей в космическом холоде, и, соответственно, внутренняя энергия всегда отличны от нуля. Эта закономерность проявляется и при коллапсе космических объектов. При увеличении плотности тела в определенном его объеме находится все меньше частиц с малой энергией. Напротив — растет число электронов с высокой кинетической энергией. Даже у черных дыр, несмотря на чудовищно огромное собственное поле тяготения, их внутренняя энергия не может быть равной нулю. Учитывая ранее изложенное, а также то, что достоверность существования черных дыр все еще под вопросом, мне представляется, что наиболее подходящими кандидатами на роль объектов, обладающих наименьшим темпом собственного времени, могут считаться как космические тела, пережившие коллапс, так и тела, исчерпавшие ресурсы ядерных процессов, — «умершие» звезды, охладившиеся до абсолютного нуля, но не сжавшиеся, например «черные карлики». Давление в охладившемся, но не сжавшемся объекте не должно разрушать атомы железа в кристалле, а это соблюдается примерно до давления 10 Вышеназванным условиям отвечают объекты с активной гравитационной массой, равной или меньшей, чем две массы Солнца. Согласно эйнштейновской теории гравитации такие объекты будут обладать статическим устойчивым состоянием, т. е. сжиматься не будут. Таким образом, можно считать, чтоминимальным темпом собственного времени обладают «сгоревшие» холодные космические тела с массой не более двух солнечных масс, а также, возможно, сколлапсировавшие объекты типа нейтронных звезд. Такие объекты, обладая минимальным темпом времени, расположатся на противоположном конце гигантской шкалы, вторую крайнюю точку которой уже заняла частица (или локальность) в межгалактическом вакууме. Внутри этой удивительной шкалы находятся (каждый со своим собственным временем) и планеты, и материальные поля, и звезды: обычные и белые карлики, и красные гиганты, и электроны, и квазары, и мы с вами, уважаемый читатель. Возникает, конечно, серьезный вопрос: как сравнивать собственное время у столь различных материальных систем. Можно задачу несколько упростить — рассматривать собственное время всевозможных космических тел без учета внешнего гравитационного воздействия на них (когда оно незначительно); можно также считать, что они находятся в состоянии покоя, т. е. рассматривать их относительно систем отсчета, совмещенных с ними. Собственное время этих тел будет зависеть только от их внутренней энергии и от собственного гравитационного притяжения. Это собственное время можно считать внутренним собственным временем. Но как сопоставить эти «времена»? Ведь во Вселенной нет какой-либо особой привилегированной (неподвижной) системы отсчета и, рассматривая наши тела относительно различных систем, мы с неизбежностью вносим путаницу и не сможем сравнить темпы времени различных тел. Может быть, сравнивать ход времени у различных субъектов относительно Земли? (По крайней мере, до тех пор, пока мы не знаем других разумных обитателей Вселенной.) Можно, но неудобно, явно неудобно для тел, расположенных недалеко. К счастью, идеи есть, и мне они представляются удачными и потому перспективными. Я имею в виду, например, работу А. Ефимова и А. Шпитальной. Авторы использовали 128 астрометрических квазаров, взятых из каталога внегалактических источников, составленного лабораторией реактивного движения Калифорнийского института. «Квазарная система координат будет практически неподвижной… в течение нескольких тысяч лет, т. к. весь массив квазаров находится от Солнечной системы на расстоянии более 700 млн. световых лет. Такая система координат даст возможность, к примеру, изучать движение Солнечной системы в одной и той же неподвижной (выделено мною. — А.Б.) системе координат…» {46} Наиболее удобным может оказаться определение собственного времени каждой материальной системы Вселенной относительно максимально возможного темпа времени или относительно некой принятой постоянной — единицы эталонного времени. |
||
|