"Геометрия, динамика, вселенная" - читать интересную книгу автора (Розенталь Иосиф Леонидович)

6. ГЕОМЕТРИЯ В ЦЕЛОМ И ГЕОМЕТРИЯ В МАЛОМ

Наши привычные представления о геометрических фигурах основаны на образе, вписанном, вложенном в евклидово пространство. Да и сама евклидова геометрия широко использует образы объемов или поверхностей, вложенных в евклидово пространство. Для общего представления о фигурах подобная картина вполне достаточна. Однако такие образные представления являются в некотором смысле атавизмом, оставшимся в наследие от убеждения в единственности евклидовой геометрии, понимаемой как ветвь математики. Как только сформировались идеи неевклидовой геометрии, возникла необходимость описания поверхностей-пространств любой размерности независимо от фона — пространства, куда вкладываются эти поверхности-пространства. Последние в такой постановке задачи выступают, как носители самостоятельной автономной геометрии, не связанные с осями координат, вписанными в глобальное евклидово пространство-фон.

Подобный подход был в прошлом столетии предложен К.Гауссом и Б.Риманом и является основой дифференциальной геометрии. Это сравнительно сложная математическая дисциплина, и мы здесь ограничимся качественными иллюстрациями основных ее идей, адресуя желающих познакомиться с ней детальнее к соответствующим учебникам и монографиям.[5]

Чтобы понять основные идеи геометрии поверхностей, обратимся вначале к привычным образам евклидовой плоскости двумерного пространства и двумерной сферы, рассматриваемой как автономное пространство. Известно, что основным свойством евклидова пространства является изотропия и однородность — полная эквивалентность его точек. Однако этого фундаментального свойства евклидова пространства недостаточно для его однозначного определения. Утверждение, что однородное и изотропное пространство есть пространство Евклида, не точно, поскольку этому свойству однородности и изотропии удовлетворяет также и сфера: все ее точки также эквивалентны относительно поворотов осей координат и их трансляции. Иначе говоря, глобальные относительно этих операций свойства обоих пространств одинаковы. Чтобы их количественно отличить, нужно ввести локальные характеристика, характеризующие различие плоского и сферического пространств. Иначе говоря, нужно определить величину, характеризующую кривизну сферической поверхности сравнительно с евклидовым пространством.

В рамках глобальной неевклидовой геометрии (как мы отмечали ранее) отличие геометрии от евклидовой характеризуется отклонением суммы углов треугольника от π или (что то же самое) отклонением от теоремы Пифагора. Рассмотрим теперь малые участки обеих пространств. Для них квадрат интервала ds**2 между двумя достаточно близкими точками представляется выражениями:

ds**2=dx**2 + dy**2 (плоскость) (1)

ds**2=r**2 sin**2 θ d FI + r**2 d FI**2 (сфера) (2)

r, θ, FI — соответственно радиус, полярный и азимутальные углы. Однако в косоугольных координатах квадрат интервала и плоскости имеет вид

s**2=dx**2 + dy**2 + 2 dx dy cos ALPHA

Хотя численное значение интервала остается неизменным (квадрат длины вектора — инвариант относительно замены системы координат), тем не менее форма (3) имеет более сложный вид, чем соотношение (1). Однако выражения (1) и (3) для квадрата интервала имеют лишь разные формы. Различие форм отражает разницу в выборе системы координат. Изменяя систему отсчета, можно во всей евклидовой плоскости интервал ds**2 свести к простой форме (1).

С выражением (2) интервала на сфере дело обстоит совсем по-другому. Форму (2) никаким преобразованием координат нельзя свести к простому соотношению (1) на всей сфере одновременно. Такую процедуру можно проделать лишь локально, выбирая направление на маленьком участке сферы так, чтобы θ=π/2. Однако при таком выборе система координат фиксируется применительно у этому участку сферы. Поэтому глобально для всей сферы соотношения (2) и (1) различаются, что и отражает неевклидовость сферы. Локально — в малом сферу можно аппроксимировать частью плоскости; глобально — в целом — невозможно.

Представление участка сферы плоскостью довольно тривиальная процедура. Любую малую окрестность достаточно гладкой поверхности можно в первом приближении аппроксимировать плоскостью по аналогии с тем, что отрезок ds непрерывной кривой, описываемой дифференцируемой функцией f(x), представляется в окрестности точки x отрезком прямой длины

ds={[f'(x)]**2+1}**(1/2) dx. (4)

Малый участок достаточно гладкой поверхности обладает следующими свойствами:

1. В малом однозначно определяется прямая — кратчайшее расстояние между двумя точками.

2. В малом определяется однозначно вектор и скалярное произведение двух векторов.

3. Скалярное произведение двух векторов однозначно определяет свойства пространства. Инвариантность скалярного произведения относительно вращений и трансляций определяет евклидово пространство, что и отражено в аналоге равенства (3):

ds**2=dx| dx|=dx|**2 + dx|**2 + 2 dx| dx| cos ALPHA (5)

1 2 1 2 1 2

Это рассуждение — геометрический аналог аналитического соотношения (4). Выбор интервала ds**2 в виде квадратичного выражения принципиален. Квадрат — наименьшая степень, при которой интервал сохраняет свою величину (инвариантен) относительно весьма широкого класса преобразований. В принципе можно было бы опираться на выражения интервалов через многочлены более высокой четной степени, однако, как оказалось, подобная усложненная геометрия практически современной физике не нужна.

Итак, в дифференциальной геометрии фундаментальную роль играет интервал и его инвариантность относительно широкого класса преобразований. Выражение (3) записывается обычно в следующей форме:

ds**2 = g|| dx| dx|, (6)

ik i k

где наличие общих индексов означает суммирование по всем возможным их значениям. Для двумерной поверхности i,k=1,2; для трехмерной — i,k = 1,2,3 и т. д.

Величины g|| образуют метрический тензор и

ik представляются квадратной таблицей (матрицей). Вследствие симметрии (g||=g||) метрический тензор в общем случае

ik ki характеризуется N(N+1)/2 компонентами.

Для пространства Евклида все компоненты метрического тензора можно привести к простейшему виду во всех точках пространства: g||=0, если i\=k; g||=1, если i=k. Это правило

ik ik верно лишь для пространства Евклида. Выражение (6) является алгебраическим представлением произвольной достаточно гладкой поверхности. Можно дать и наглядное, более геометрическое отображение ее свойств. Это отображение основано на упомянутом выше положении, доказанном еще Гауссом, о том, что в малом отклонение геометрии от евклидовой пропорционально некой величине, называемой кривизной. Несколько огрубленно можно сказать, что кривизна (количественная мера отклонения поверхности от евклидовой) оптимальная аппроксимация малого участка поверхности набором окружностей разных радиусов. Число этих окружностей растет с ростом размерности поверхности. Однако существуют симметричные поверхности — пространства, для которых кривизна характеризуется меньшим числом компонент. Так, для сферы кривизна R — однокомпонентная величина.

R~1/r**2, (7)

где R — радиус сферы.

На примере сферы становится ясным, что с уменьшением кривизны или увеличением размеров поверхность локально приближается к евклидову пространству. Такое приближение реализуется и в более общем случае, когда все компоненты кривизны уменьшаются.

Сфера не является единственной поверхностью с постоянной кривизной. Пример другой такой поверхности пространство Лобачевского, образованное вращением гиперболы. Существует, однако, существенная разница между сферой и пространством Лобачевского. Кривизна сферы положительна, кривизна пространства Лобачевского имеет отрицательный знак. Пространство Евклида — единственное, характеризуемое постоянной, но нулевой кривизной.

И еще одно замечание. Ранее отмечалось, что характеристика неевклидовости двумерных плоскостей отклонение суммы углов треугольника от π. Говоря о проведении треугольника на произвольной поверхности, мы молчаливо подразумевали возможность единственного проведения прямых на поверхности в смысле Евклида (прямая — кратчайшее расстояние). Однако в общем случае между двумя точками поверхности можно провести несколько кратчайших расстояний. Эта неоднозначность устраняется, если выбирается достаточно малый участок поверхности.

Отметим (ввиду важности утверждения) снова, что в малом участке можно определить евклидову систему отсчета. В малом для гладких поверхностей имеет смысл понятие вектора и векторного произведения, инвариантного относительно трансляций и поворотов в пределах малого участка. Но в отличие от евклидова пространства, в котором существует глобальная система координат, обладающая подобными свойствами, в общем случае существование евклидовой системы возможно лишь в малом. По существу это утверждение имеет простой наглядный (геометрический) смысл. Гладкую поверхность можно аппроксимировать бесконечным набором примыкающих малых плоскостей, расположенных друг относительно друга под определенными углами. Характеристики взаиморасположения микроплоскостей кривизны или связности понятия, которые целесообразно рассмотреть в следующем разделе.

Последние рассуждения прямо относились к двумерным поверхностям. Однако в рамках аналитической или дифференциальной геометрии, когда свойства пространств определяются числами (координатами или величинами компонент метрического тензора или кривизны), можно с равным успехом проводить анализ поверхностей любой целочисленной размерности. Методы аналитической и дифференциальной геометрии позволяют представить геометрические фигуры в безликих арифметических терминах, и нет нужды «воображать» сами поверхности.

Возможность оперировать с поверхностями (пространствами) произвольной размерности исключительно важна для понимания свойств и характеристик физического пространства (об этом речь пойдет в следующих главах).

В заключение еще одно замечание. Утверждение, что локально поверхность эквивалентна евклидову пространству, означает, что в любой точке интервал можно привести к виду

N

— ds**2 = gt; dx|**2 (8)

— i

i=1

Такие поверхности называются римановыми и обладают свойством ds**2 gt; 0 (положительно определенная матрица).

Теория относительности внесла коррективы в это определение. Эта теория выдвинула идею нового типа пространств — пространств Минковского когда интервал ds**2 может иметь оба знака (ds**2 ≥ 0 или ds**2 ≤ 0), метрика таких пространств называется индефинитной, а сами пространства псевдоевклидовыми.

Метрика псевдоевклидовых пространств размерности N имеет вид:

N| N|

1 2

- — ds**2 = gt; dx|**2 — gt; dx|**2 (9)

— i — k

i=1 k=1

причем N|+N|=N. Обобщением псевдоевклидова пространства

1 2 является псевдориманово пространство, которое локально представляется псевдоевклидовой метрикой.

7. РАССЛОЕННЫЕ ПРОСТРАНСТВА

Уже упоминалось ранее, что точка иногда определяется как геометрический объект, не имеющий протяженности. Поэтому напрашивался вывод, что точка в таком понимании не имеет структуры. Однако критический анализ основных понятий геометрии, а также внутренние, имманентные законы развития дифференциальной геометрии стимулировали создание и развитие нового математического образа — расслоенного пространства. Первые работы, в которых формировались основные понятия расслоенных пространств и их связи с другими разделами математики, относятся к 30 — 50-м годам и принадлежат выдающимся математикам: Э.Картану, Х.Уитни, Ш.Эресману, Ш.Черну.

Вначале казалось, что этой новой ветви математики уготована участь многих ее разделов: служить красивой абстракцией, не связанной с физической реальностью. Основания для подобных прогнозов были. Фундаментальное понятие точки у расслоенных пространств отличалось от интуитивного образа бесструктурной точки. Однако эволюция физики, и в первую очередь квантовой теории поля, физики элементарных частиц и космологии, привела к сближению представлений о точках в физике и расслоенных пространствах. Постепенно начал вырисовываться абрис синтеза фундаментальной физики и геометрии на базе расслоенных пространств. По нашему мнению, можно высказать и более сильное утверждение: существует «истинное» физическое пространство, которое реализуется в терминах расслоенных пространств.

Если такая несколько претенциозная формулировка выглядит экстремистской, то более ограниченное утверждение: объединенная теория взаимодействий допускает геометрическую интерпретацию на базы расслоенных пространств — кажется бесспорным. Необходимость такого заключения оказалась для физики несколько неожиданной. Даже творцы теории элементарных частиц оказались неподготовленными к вторжению математики расслоенных пространств в физику. В этом аспекте характерен диалог физика Ч.Янга с одним из основоположников геометрии расслоенных пространств Ш.Черном.

Янг: «Это (расслоенные пространства. — И.Р.) приводит в трепет и изумление, поскольку вы, математики, выдумали эти понятия из ничего».

Черн: «Нет, нет! Эти понятия вовсе не выдуманы. Они существуют на самом деле».'

------------------------------' Янг Ч. Эйнштейн и физика второй половины XX века // УФН. 1980. Т.132. С.174. О расслоенных пространствах см. также ст.: Даниэль С., Виалле М. Геометрический подход к калибровочным теориям типа Янга — Миллса // УФН, 1982. Т.136. С. 377–420; Бернстейн Г., Филлипс Э. Расслоения и квантовая теория // УФН. 1982. Т.136. С. 665–692. ------------------------------

Этот диалог весьма примечателен. Математики часто строят конструкции, кажущиеся физикам абстрактными, не связанными с физическими ценностями. Разные подходы математиков и физиков приводят к недооценке адекватности некоторых «абстрактных» математических методов физическим проблемам. В результате эти методы заново переоткрываются физиками. Пожалуй, классический пример подобной ситуации переоткрытие В.Гейзенбергом в 1925 г. матричного исчисления, которое он использовал для создания квантовой механики. Лишь после бесед с М.Борном он узнал, что теория матриц — хорошо разработанный раздел математики практически не используемый физиками.

После этих предварительных замечаний целесообразно перейти к изложению основных идей геометрии расслоенных пространств. Начнем с представления основных образов (картин) расслоенных пространств.

Первый связан с обобщением понятия точки. Точка в расслоенном пространстве эквивалентна автономному пространству. Иначе говоря, можно наглядно представить, что точка в расслоенном пространстве эквивалентна точке в смысле Евклида (объект, лишенный протяжения), к которой «прикреплено» (или лучше: которой соответствует) свое пространство. Можно представить расслоенное пространство в целом. Оно представляет совокупность большого числа (как правило, бесконечного множества) пространств, из которых одно, называемое базой, играет особую роль. Каждая точка этого пространства взаимно однозначно связана со своим пространством, называемым слоем над базой. Каждой точке в базе соответствует свое пространство (слой), отражающий структуру точки.

Приведем некоторые простейшие примеры расслоенных пространств. Пусть база — прямая, т. е. евклидово одномерное

1 пространство' R|. Каждой точке базы — прямой — соответствует

1 окружность S|, расположенная в плоскости, перпендикулярной базе, центром которой является данная точка базы. Радиусы всех окружностей одинаковы. Расслоенное пространство определено однозначно. В данном случае размерности слоев и базы одинаковы и равны 1. Полное расслоение пространства представляет цилиндр и его ось.

------------------------------' Символом R часто обозначают риманово пространство, частным случаем которого является пространство Евклида. Индекс вверху обозначает размерность пространства. Символ S

1 соответствует сферическим пространствам: S| — окружность,

2 S| — двумерная сфера и т. д. —----------------------------

Можно привести пример расслоенного пространства, в котором размерности базы и слоев различны. Пусть база

3 трехмерное евклидово пространство R|, а слои — двумерные

2 сферы S|.

Подчеркнем принципиальную разницу между обоими примерами. В первом случае и слой и база — одномерные фигуры. Полное расслоенное пространство — фигура трехмерная (цилиндр+прямая), и ее нетрудно вообразить воочию.

Второй пример расслоенного пространства не поддается такой наглядной интерпретации. Каждый его элемент — сфера с точкой базы в центре. Однако совокупное расслоенное пространство имеет пять измерений. Представление о нем как о множестве сфер, расположенных в трехмерном пространстве, неправильно. Слои-сферы находятся в дополнительных измерениях, и поэтому расслоенное пространство в целом нельзя изобразить адекватно на бумажном листе. Представление пространства доступно лишь с помощью аналитических методов.

≡=РИС. 1

≡=РИС. 2

В простейшем случае точки базы и слоев — действительные числа. Можно представить, что пространство слоев состоит из точек — мнимых чисел. Например, можно представить себе слой в виде сферы, каждая точка которого — мнимое число.

Приведем еще один пример. База — круг радиуса r (рис. 1). Над базой находится цилиндрический объем, ось которого проходит через центр базового круга перпендикулярно плоскости, в которой он расположен. В данном случае слоями являются прямые, расположенные внутри цилиндра, перпендикулярные основанию. Например, слою aa| соответствует

1 точка; слою bb| — точка B.

1

Во всех приведенных примерах все слои одинаковы. От замены одного слоя на другой геометрия расслоенного пространства не изменится. Такой простейший случай называется простым произведением пространства базы на пространство слоя. Например, первое из приведенных выше

1 1 2 2 пространств обозначается R| x S|; второе — R| x S| и т. д.

Возникает вопрос: как математически определить те простейшие расслоения, о которых шла речь выше. До сих пор мы рассматривали примитивные расслоенные пространства простые произведения. Существуют и менее тривиальные произведения.

Как уже упоминалось, наглядно можно представить лишь расслоенные пространства малой размерности (полная размерность N≤3).

1 1

Вначале рассмотрим простейшее расслоение R| x S|.

1 Допустим, что слой — окружность S| — находится в плоскости,

1 перпендикулярной базе — прямой R|. Радиус всех слоев положим для простоты равным 1, что не уменьшит общности рассмотрения, поскольку единицы измерения — в ведомстве физики, а не математики. Положение радиус-вектора из любой

1 1 точки прямой R| в соответствующую точку окружности S| будем характеризовать углом ALPHA, отсчитываемым от некоторой

1 прямой, перпендикулярной базе R|. В простейшем случае интервал определяется соотношением ds**2 = dx**2 + d ALPHA**2. В более общем случае n-мерного

n 1 евклидова пространства со слоем S| (R| x S|) метрику можно

1 записать в виде матрицы:

! SIGM|| 0!

! ik! g|| =!! (10)

юv!!

! 0 1!

i,k = 1,2….,n; ю, v = 1,2….,n+1=N; SIGM|| = 1 при i=k;

ik

n

— SIGM|| = 0 при i ≠ k; ds**2 = gt; dx|**2 + d ALPHA**2.

ik — i

i=1

Такую простую форму интервал имеет при специальном выборе системы координат (смешанная система: n координат декартовы, а (n+1) — я описывается в одномерной сферической системе). Разумеется, в общем случае метрика имеет более сложный вид. Однако в одном важном для нас частном случае,

1 когда окружность S| описывается в комплексной плоскости, соотношение (10) сохраняется. Этот вывод следует из двух фактов, лежащих в основе теории комплексных чисел:

iA 1) функция f(ALPHA) = e|| описывает в комплексной плоскости окружность с радиусом, равным единице, и 2) модуль функции

* f(ALPHA) равен единице: f| (ALPHA) * f (ALPHA) = 1.

Приведем пример нетривиального трехмерного расслоения. С этой целью рассмотрим аналог рис. 1. Рассмотрим вначале

1 простое произведение окружности S| на цилиндрическую поверхность, которую можно получить путем простого склеивания прямоугольной полоски бумаги так, чтобы краевые

1 1 точки A и B, A| и B| совпали (рис. 2,а). Однако можно полоску

1 перекрутить так, чтобы точка A совпала бы с точкой B|, а

1 точка B — с точкой A| (рис. 2,б). В результате получается поверхность, называемая листом Мёбиуса. Такая поверхность может быть совокупностью слоев над базой — окружностью. Однако ясно, что при перемещении вдоль окружности-базы слои утрачивают свое равноправие. Так, слой AB остался неизменным: он перпендикулярен плоскости, в которой находится окружность. Другие же слои повернулись на некоторый угол, который зависит от от расстояния от линии AB. В общем случае расслоенное пространство — сравнительно сложная конструкция. Мало задать пространство базы и пространство слоев. Нужно еще и зафиксировать отношения между ними. Идея определения этого отношения заимствована из дифференциальной геометрии, где эта идея — лишь одна из возможностей измерения отклонения пространства от евклидова. Для расслоенных пространств общего вида описанный ниже метод, пожалуй, основной.

Ранее мы упоминали, что искривленное пространство характеризуется различными величинами: отклонением суммы углов треугольника от π (неевклидовость), отличием метрики пространства от евклидовой метрики и, наконец, кривизной пространства. Однако существует сравнительно наглядная характеристика искривленности, называемая связностью. Для обычного (нерасслоенного) пространства связность определяется совокупностью углов между данным малым линейным элементом поверхности и всеми соседними малыми элементами.

Чтобы сделать это наглядное определение математически более строгим, необходимо сформулировать общее правило параллельного переноса векторов.

В евклидовой геометрии параллельный перенос отрезка прямой линии — стандартная операция с достаточно очевидным результатом. Если переносить этот отрезок параллельно самому себе вдоль замкнутого контура, то в результате полного обхода контура конечная прямая совпадет с первичной. Однако такой результат неочевиден (и даже неверен) для кривой поверхности.

Чтобы понять дальнейшие рассуждения, следует сделать некоторое усилие и отрешиться от привычных и наглядных представлений о параллельных в евклидовом пространстве.

Прежде всего определим для кривой поверхности однозначный аналог прямой между двумя точками. Уже упоминалось, что в общем случае этого требования недостаточно для однозначного определения «прямой» между двумя точками. Оно оказывается достаточным, если обе точки расположены близко друг к другу. Тогда кратчайший отрезок, соединяющий обе точки, называется геодезической линией. Если нужно провести геодезическую линию (аналог прямой) для двух произвольных точек, то ее составляют из отрезков геодезических, соединяющих близкие точки.

Процедура параллельного переноса была предложена итальянским ученым Т.Леви-Чивита. возьмем на поверхности две

1 бесконечно-близкие точки M и M| и рассмотрим в точке M вектор поверхности a (лежащий в касательной плоскости к поверхности). Если перенести вектор a параллельно самому

1 себе (в евклидовом смысле) в точку M|, то он не будет лежать

1 в касательной плоскости в точке M| поверхности и не будет вектором поверхности. Спроектируем вектор a на касательную

1 1 плоскость к поверхности в точке M|, тогда получим вектор a|,

1 лежащий в касательной плоскости к поверхности в точке M| и

1 являющийся вектором поверхности. По определению, вектор a|

1 является параллельно перенесенным в точку M| вектором a. Если точки M и N отстоят на бесконечном расстоянии, то их следует соединить кривой, лежащей на поверхности, разбить ее на бесконечно малые участки и к каждому применить процедуру параллельного переноса. Получающийся в результате вектор зависит от вида соединяющей исходную и конечную точки кривой. Если кривая замкнута, то при возвращении в исходную точку параллельно перенесенный вектор не будет совпадать с исходным, а составит с ним некий угол BETA. Этот угол равен нулю, если параллельный перенос производится вдоль геодезической линии. Это связано с тем, что при параллельном переносе угол между переносимым вектором и геодезической линией не меняется.

≡=РИС. 3

На рис. 3 изображена сферическая поверхность, на которой демонстрируется описанная процедура параллельного переноса. В результате параллельного переноса «прямой» вдоль окружности на сфере между первичным и конечным векторами возникает угол BETA ≠ 0.

Можно предложить простую «экспериментальную» иллюстрацию параллельного переноса. Проведем краской на плоскости несколько параллельных прямых. Прокатим далее по этой плоскости конус, постулируя отсутствие трения между конусом и плоскостью, в том смысле, что трение не меняет первоначальное направление движения конуса, но достаточно велико, чтобы нанесенные на плоскость прямые отпечатались бы на конусе. Эти отпечатки и будут параллельными на конусе. Относительное положение двух близких отпечатков отражает параллельный перенос на конусе.

Уже упоминалось, что связность отлична от нуля для кривого пространства. Поэтому связность — одна из нескольких характеристик искривления (отклонения от евклидовости) геометрической фигуры.

До сих пор мы придерживаемся сравнительно привычных представлений. Пространства с обычными понятиями «точка» всегда можно хотя бы упрощенно иллюстрировать в виде двумерной поверхности. Сейчас наступило время перейти к расслоенным пространствам. Такой переход связан с некоторой психологической перестройкой. Хотя простейшие расслоенные пространства также можно мысленно представить в виде геометрических фигур, но всегда, когда оперируют с расслоенными пространствами, следует помнить, что они множество пространств, находящихся в неравноправном положении. Одно из них — база — занимает особое место.

Если среди характеристик простых пространств связность занимает рядовое место (одна из нескольких характеристик), то в теории расслоенных пространств обобщенное понятие связности, пожалуй, основная характеристика. Связность в расслоенных пространствах играет ключевую роль: она характеризует отношения между базой и слоями и между соседними слоями.

В общем случае определение связности имеет довольно сложный вид.' Мы здесь ограничимся простым и наглядным примером определения связности и некоторыми важными для физики приложениями.

------------------------------' См. кн.: Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. М.; Наука, 1979, Т.1. ------------------------------

Вернемся снова к рис. 3. Круг и цилиндр на нем расслоение полусферы, изображенной в верхней его части. Построим на полусфере треугольник, образованный геодезическими линиями — отрезками больших кругов. Разумеется (поскольку сфера — неевклидова поверхность), сумма углов треугольника не равна π. Спроецируем точки треугольника на круг (базу), параллельный основанию полусферы. Прямые, осуществляющие проецирование, будем полагать слоями расслоенного пространства.

Произведем далее операцию параллельного переноса на полусфере вдоль контура треугольника. Поскольку полусфера неевклидова поверхность, то при полном обходе треугольника (возвращение вектора в точку, совпадающую с началом вектора a) между направлениями первичного и конечного векторов (стрелки на рисунке) образуется некоторый угол — связность.

Обобщим это понятие на расслоенное пространство. С этой целью спроецируем треугольник на круг (базу). Прямые, осуществляющие проекцию, — слои пространства. Проекции начального и конечного векторов на полусфере образуют на круге некоторый угол v ≠ 0, который является компонентой связности в базе.

Чтобы определить связность в слоях, введем расстояние от начала слоя (отрезка), которое является, вообще говоря, произвольной точкой отсчета. Важно лишь, чтобы во всех слоях были бы одинаковые точки отсчета. Иначе говоря, любой круг, пересекающий слои и параллельный основанию полусферы, мог бы определить точки отсчета. Естественно (но не необходимо) отождествить точки отсчета с точками круга — базы. Будем далее измерять угол между векторами во время параллельного переноса в произвольных единицах (например, радианах) и откладывать этот угол на прямых — слоях пространства. В результате операции полный обход периметра треугольника на сфере будет соответствовать некоторому подъему величины проекции в слое. Этот подъем определяется смещением векторов в полусфере при возвращении в точку, совпадающую с началом вектора a после полного обхода контура. В пространстве слоев

1 начало обхода на полусфере соответствует точке a|, конец 1 1 1 d| (см. рис. 3). Таким образом, расстояние a|d| характеризует связность в слое.

Расслоение полусферы на круг и линейное пространство одно из простейших расслоений, позволяющих дать наглядную интерпретацию связности расслоенного пространства. В общем случае подобная наглядность утрачивается. Идея введения общего определения связности близка к основной идее дифференциальной геометрии: в малом объеме метрика пространства евклидова или псевдоевклидова. В расслоенных пространствах также постулируется простота пространства в малом. Полагается, что в малом расслоенное пространство можно представить простым произведением, частным случае которого и было расслоение полусферы.

В результате обхода микроконтура в полном пространстве или базе определяется компонента связности в базе. Далее в соответствии с приведенным выше примером операция обхода микроконтура количественно отображается в пространстве слоев, определяя таким образом связность в этом пространстве.

В заключение сделаем одно замечание, имеющее, как мы увидим далее, прямое отношение к физике (динамике). Хотя значение связности определяется однозначно, однако операция ее вычисления неоднозначна. Это утверждение — следствие

1 неоднозначности в выборе начальной точки отсчета a|. Сделанный нами выбор: начало обхода контура соответствует пересечению слоя (прямой) и базы (круга) — обусловлен

1 простотой. Точку a| можно было бы сместить вдоль соответствующей прямой (слоя) на произвольную величину.

1 Связность определяется не положением точки a|, а разностью

1 1 отрезком a|d|.