"Рассказы о металлах. 4-е издание" - читать интересную книгу автора (Венецкий С. И.)

И сегодня, спустя целое столетие, без электролиза немыслимо получение алюминия. Именно это обстоятельство и заставляет ученых ломать голову над весьма загадочным фактом. В Китае есть гробница известного полководца Чжоу Чжу, умершего в начале III века. Сравнительно недавно некоторые элементы орнамента гробницы были подвергнуты спектральному анализу. Результат оказался настолько неожиданным, что анализ пришлось несколько раз повторить. И каждый раз беспристрастный спектр неопровержимо свидетельствовал о том, что сплав, из которого древние мастера выполнили орнамент, содержит 85 % алюминия. Но каким же образом удалось получить в III веке этот металл?

Ведь с электричеством человек тогда был знаком разве что по молниям, а они вряд ли соглашались принять участие в электролитическом процессе. Значит, остается предположить, что в те далекие времена существовал какой-то другой способ получения алюминия, к сожалению, затерявшийся в веках.

К концу прошлого столетия производство алюминия резко возросло и, как следствие, значительно снизились цены на этот металл, еще не так давно считавшийся драгоценным. Разумеется, для ювелиров он уже не представлял никакого интереса, зато сразу приковал к себе внимание промышленного мира, находившегося в преддверии больших событий: начинало бурно развиваться машиностроение, становилась на ноги автомобильная промышленность и, что особенно важно, вот-вот должна была сделать первые шаги авиация, где алюминию предстояло сыграть важнейшую роль. В 1893 году в Москве вышла книга инженера Н. Жукова "Алюминий и его металлургия", в которой автор писал: "Алюминий призван занять выдающееся место в технике и заместить собой, если не все, то многие из обыденных металлов…". Для такого утверждения имелись основания: ведь уже тогда были известны замечательные свойства "серебра из глины". Алюминий — один из самых легких металлов: он примерно втрое легче меди или железа. По теплопроводности и электропроводности он уступает лишь серебру, золоту и меди. В обычных условиях этот металл обладает достаточной химической стойкостью. Высокая пластичность алюминия позволяет прокатывать его в фольгу толщиной в несколько микрон, вытягивать в тончайшую, как паутина, проволоку; при длине 1000 метров она весит всего 27 граммов и умещается в спичечной коробке. И лишь прочностные характеристики алюминия оставляют желать лучшего. Это обстоятельство и побудило ученых задуматься над тем, как сделать металл прочнее, сохранив все его полезные качества. Издавна было известно, что прочность многих сплавов зачастую гораздо выше, чем чистых металлов, входящих в их состав. Вот почему металлурги и занялись поисками таких компаньонов для алюминия, которые, вступив с ним в союз, помогли бы ему окрепнуть. Вскоре пришел успех. Как не раз бывало в истории науки, едва ли не решающую роль при этом сыграли случайные обстоятельства. Впрочем, расскажем все по порядку. Однажды (это было в начале XX века) немецкий химик и металлург Альфред Вильм приготовил сплав, в который, помимо алюминия, входили различные добавки: медь, магний, марганец. Прочность этого сплава была выше, чем у чистого алюминия, но Вильм чувствовал, что сплав можно еще более упрочить, подвергнув его закалке. Ученый нагрел несколько образцов сплава примерно до 600°С, а затем опустил их в воду. Закалка заметно повысила прочность сплава, но, поскольку результаты испытаний различных образцов оказались неоднородными, Вильм усомнился в исправности прибора и точности измерений. Несколько дней исследователь тщательно выверял прибор. Забытые им на время образцы лежали без дела на столе, и к тому моменту, когда прибор был вновь готов к работе, они оказались уже не только закаленными, но и запыленными. Вильм продолжил испытания и не поверил своим глазам: прибор показывал, что прочность образцов возросла чуть ли не вдвое.