"Рассказы о металлах. 4-е издание" - читать интересную книгу автора (Венецкий С. И.)

Тончайшей алюминиевой пленкой покрыто многотонное шестиметровое зеркало крупнейшего в мире телескопа, созданного в СССР; этот дальнозоркий "глаз", обращенный в глубины Вселенной способен увидеть свет обычной свечки на расстоянии 25 тысяч километров. А американские ученые предложили использовать для ночного освещения городов гигантские зеркала из пластмассы с алюминиевым покрытием: доставленные транспорт-ными космическими кораблями на стационарную орбиту и управляемые с помощью ЭВМ, макси-зеркала будут отражать солнечный свет в десятки раз интенсивнее, чем это делает сейчас по ночам Луна.

Позолоченная алюминиевая пластинка отправилась в дальний путь на борту американской межпланетной космической станции "Пионер-2": на этой визитной карточке Земли выгравировано символическое изображение, которое расскажет представителям иных цивилизаций о нашей планете.

В последнее время ученые и инженеры большое внимание уделяют созданию совершенно новых материалов — пенометаллов. Уже разработана технология получения пеноалюминия — первенца в этом замечательном семействе. Новый материал поразительно легок: 1 кубический сантиметр некоторых видов пеноалюминия весит менее 0,2 грамма. Пробка, всегда служившая эталоном легкости, не в состоянии конкурировать с этим материалом: она на 25—30 % тяжелее. Вслед за пеноалюминием появились пенобериллий, пенотитан и многие другие удивительные материалы. …Известный английский писатель-фантаст Герберт Уэллс в своем романе "Война миров", созданном на рубеже XIX и XX веков, описывает машину, с помощью которой марсиане производили алюминий: "От заката солнца до появления звезд эта ловкая машина изготовила не менее сотни полос алюминия непосредственно из глины". Один из американских исследователей космоса в те годы, когда наше знакомство с Луной было лишь визуальным, предложил любопытную гипотезу. Ученый считал, что на каждом гектаре лунной поверхности можно встретить до сотни тонн чистого алюминия. Он высказывал соображение, что Луна является как бы гигантским природным заводом, в котором так называемый "солнечный ветер" (поток излучаемых Солнцем протонов) превращает руды железа, магния, алюминия в чистые металлы. Пока эта гипотеза не подтвердилась, тем не менее, как показал анализ образцов лунного грунта, доставленных американскими космонавтами и советскими автоматическими станциями, содержание в нем оксида алюминия довольно высокое. И все же доля истины в рассуждениях этого ученого, видимо, есть: в пробе лунного грунта, взятой автоматической станцией "Луна-20" в континентальной части нашего спутника — между Морем Кризисов и Морем Изобилия, удалось обнаружить три крохотные крупицы самородного алюминия размером в десятые доли миллиметра (в земных же условиях природный чистый алюминий даже в столь миниатюрном виде не сыщешь, как говорится, днем с огнем). Стало быть, можно считать, что на Марсе и на Луне "алюминиевая проблема" решена. А как обстоит дело на Земле? Что ж, пожалуй, и здесь все благополучно. Хотя на нашей планете нет пока машин, подобных марсианским, и на ее поверхности алюминий не валяется тоннами, все же землянам жаловаться грех: природа щедро позаботилась о том, чтобы люди не испытывали нужды в этом чудесном металле. По содержанию в земной коре алюминий уступает лишь кислороду и кремнию, значительно превосходя все металлы. Природа богата, но человек должен быть бережливым хозяином ее даров. Существует немало проектов и уже действующих установок по извлечению ценных компонентов из отходов, поступающих на городские свалки. В установках, в частности, предусмотрено оригинальное электромагнитное устройство для "добычи" из мусора алюминия. Но ведь магнитное поле не действует на алюминий? Как же с его помощью удается извлечь этот металл? Оказывается, если возбудить в алюминиевом предмете переменный ток, перемещая его в соответствующем электрическом поле, то металл на какое-то время намагничивается. В этом состоянии он и попадает в "руки" магнитов. Итак, алюминиевым сырьем мы обеспечены. Создать же оригинальные агрегаты, усовершенствовать способы получения "крылатого металла", найти ему новые области применения — это забота инженеров и ученых. Ракета застывает в небе. — "Меняли ли вы фамилию?" — В честь сыновей Геи. — Титаническая задача. — Ошибка за ошибкой. — Широкий резонанс. — Ложка дегтя. — Ирония здесь неуместна. — Освобождение из плена. — "Черная птица". — Вот это выдержка! — Гребцы меняют лодки. — Парадокс? — На папирусном судне "Ра". — Нелепая точка зрения. — Тысячу лет спустя. — В океанских пучинах. — Третий шпиль Северной Пальмиры. — Акрополь закрыт на ремонт. — Порок излечим. — Вот так редкий! — Немного фантастики. — Рудник в Море Спокойствия. — В объятиях кислорода. — Тяжелые испытания. 18 августа 1964 года в предрассветный час на проспекте Мира в Москве стартовала космическая ракета. Этому звездному кораблю не суждено было достичь Луны или Венеры, однако судьба, уготованная ему, не менее почетна: навеки застыв в московском небе, серебристый обелиск должен пронести через столетия память о первом пути, проложенном советским человеком в космическом пространстве. Авторы проекта долго не могли выбрать облицовочный материал для этого величественного монумента. Сначала обелиск запроектировали в стекле, потом в пластмассе, затем в нержавеющей стали. Но все эти варианты были забракованы самими авторами. После долгих раздумий и экспериментов решено было остановиться на отполированных до блеска титановых листах. Почему же именно на титан была возложена столь почетная миссия — рассказать потомкам о подвиге наших современников? Титан не случайно называют вечным материалом. Но прежде, чем говорить о свойствах, познакомимся с биографией этого металла. Если бы титану пришлось заполнять анкету, то в графе "Меняли ли Вы фамилию?" он вынужден был бы указать, что до 1795 года назывался "менакином". Такое название дал этому элементу открывший его в 1791 году английский священник Уильям Грегор, в свободное от работы время с увлечением занимавшийся минералогией и химией. Вблизи своего прихода в местечке Менакан в Корнуолле он набрел как-то на незнакомый минерал в виде темного крупного песка. В нем-то и был обнаружен им неизвестный ранее элемент. Грегор окрестил минерал менаканитом, а новый элемент — менакином. Но, видимо, это имя пришлось элементу не по вкусу и при первой же возможности (а она представилась в 1795 году, когда немецкий химик Мартин Клапрот вторично открыл элемент — на этот раз в минерале рутиле), он сменил его на красивое, ко многому обязывающее имя "титан". Титанами в древнегреческой мифологии звали сыновей Геи — богини Земли. Спустя два года выяснилось, что Грегор и Клапрот открыли один и тот же элемент, за которым с тех пор и утвердилось гордое название — титан. Открыть элемент — это еще не значит выделить его в чистом виде. И Грегору, и Клапроту удалось получить только химическое соединение титана с кислородом — белый кристаллический порошок оксида титана. Выделение титана из его соединений оказалось поистине титанической задачей. Решить ее пытались многие известные химики прошлого века, но всех их ждала неудача. Одно время казалось, что поиски английского ученого Волластона увенчались успехом. Исследуя в 1823 году кристаллы, обнаруженные в металлургических шлаках, он пришел к заключению, что кристаллическое вещество — не что иное, как чистый титан. Спустя 33 года немецкий химик Вёлер установил, что эти кристаллы представляют собой соединение титана с азотом и углеродом, а отнюдь не свободный титан, как ошибочно считал Волластон. Много лет полагали, что впервые металлический титан был получен в 1825 году знаменитым шведским ученым Берцелиусом при восстановлении фтортитаната калия металлическим натрием. Но сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что непременный секретарь Королевской шведской Академии наук ошибался, ибо чистый титан быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а титан Берцелиуса успешно сопротивлялся ее действию. Лишь в 1875 году русский ученый Д.К. Кириллов сумел получить металлический титан. Результаты этих работ Д.К. Кириллов опубликовал в брошюре "Исследования над титаном". Но в условиях царской России этот важный труд никого не заинтересовал и поэтому остался незамеченным. В 1887 году довольно чистый продукт — около 95 % титана — получили соотечественники Берцелиуса Нильсон и Петерсон, восстанавливавшие тетрахлорид титана металлическим натрием в стальной герметичной бомбе. Следующий шаг на пути к чистому титану сделал в 1895 году французский химик Муассан, который восстанавливал оксид титана углеродом в дуговой печи и затем подвергал полученный металл двухкратному рафинированию. Его титан содержал всего 2% примесей. Наконец, в 1910 году американский химик Хантер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов сравнительно чистого титана. Это событие вызвало широкий резонанс в различных странах. Именно поэтому многие до сих пор ошибочно приписывают Хантеру, а не его предшественникам приоритет выделения титана в чистом виде.