"Д.К.Самин. 100 великих ученых " - читать интересную книгу автора К этому времени относятся свидетельства современников Виета о его
огромной трудоспособности. Будучи чем-то увлечён, учёный мог работать по трое суток без сна. В 1584 году по настоянию Гизов Виета отстранили от должности и выслали из Парижа. Именно на этот период приходится пик его творчества. Обретя неожиданный покой и отдых, учёный поставил своей целью создание всеобъемлющей математики, позволяющей решать любые задачи. У него сложилось убеждение в том, "что должна существовать общая, неизвестная ещё наука, обнимающая и остроумные измышления новейших алгебраистов, и глубокие геометрические изыскания древних". Виет изложил программу своих исследований и перечислил трактаты, объединённые общим замыслом и написанные на математическом языке новой буквенной алгебры, в изданном в 1591 году знаменитом "Введении в аналитическое искусство". Перечисление шло в том порядке, в каком эти труды должны были издаваться, чтобы составить единое целое - новое направление в науке. К сожалению, единого целого не получилось. Трактаты публиковались в совершенно случайном порядке, и многие увидели свет только после смерти Виета. Один из трактатов вообще не найден. Однако главный замысел учёного замечательно удался: началось преобразование алгебры в мощное математическое исчисление. Само название "алгебра" Виет в своих трудах заменил словами "аналитическое искусство". Он писал в письме к де Партене: "Все математики знали, что под алгеброй и алмукабалой... скрыты несравненные сокровища, но не умели их найти. Задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства..." Основу своего подхода Виет называл видовой логистикой. Следуя примеру некую систему "видов". В эту систему входили, например, переменные, их корни, квадраты, кубы, квадрато-квадраты и т.д., а также множество скаляров, которым соответствовали реальные размеры - длина, площадь или объём. Для этих видов Виет дал специальную символику, обозначив их прописными буквами латинского алфавита. Для неизвестных величин применялись гласные буквы, для переменных - согласные. Виет показал, что, оперируя с символами, можно получить результат, который применим к любым соответствующим величинам, т.е. решить задачу в общем виде. Это положило начало коренному перелому в развитии алгебры: стало возможным буквенное исчисление. Демонстрируя силу своего метода, учёный привёл в своих работах запас формул, которые могли быть использованы для решения конкретных задач. Из знаков действий он использовал "+" и "-", знак радикала и горизонтальную черту для деления. Произведение обозначал словом "in". Виет первым стал применять скобки, которые, правда, у него имели вид не скобок, а черты над многочленом. Но многие знаки, введённые до него, он не использовал. Так, квадрат, куб и т.д. обозначал словами или первыми буквами слов. Знаменитая теорема, устанавливающая связь коэффициентов многочлена с его корнями, была обнародована в 1591 году. Теперь она носит имя Виета, а сам автор формулировал её так: "Если B+D, умноженное на A, минус A в квадрате равно BD, то A равно B и равно D". Теорема Виета стала ныне самым знаменитым утверждением школьной алгебры. Теорема Виета достойна восхищения, тем более что её можно обобщить на многочлены любой степени. |
|
|