"Анатолий Сухотин. Парадоксы науки (Серия "Эврика")." - читать интересную книгу автораостаток, который ведет себя точно так же, как его более крупные
предшественники, и т. д. Это не поддающееся измерению отношение диагонали и _стороны квадрата было представлено выражением V2 (корень квадратный). Оно имеет следующее происхождение. Если квадрат разрезать по диагонали, получим два прямоугольных равнобедренных треугольника, где линия бывшей диагонали будет гипотенузой, а стороны квадрата - катетами. Согласно знаменитой теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов, точнее, площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Отсюда и величина отношения гипотенузы к катету (или диагонали к стороне квадрата), равная V2 (корень квадратный). Позднее нашли, что также несоизмеримы отношения длины окружности к диаметру (оно выражается числом я), площади круга и квадрата, построенного на радиусе, и другие величины. Кризис был преодолен введением новых чисел, которые не являются ни целыми, ни дробными. Они могут быть представлены в виде бесконечных непериодических дробей. К примеру, корень из 2 равен 1,41.., п = 3,14... и т. д. Людям, знавшим только рациональные числа, вновь введенные казались несуразными, противоестественными. Это отразилось и в их названии: "иррациональные", что значит "бессмысленные", лежащие по ту сторону разумного. Дело в том, что если целые числа и дроби имели ясное физическое толкование, то для иррациональных чисел ею не находилось. Был только один способ придать им реальный смысл: сопоставить с ними длины определенных иррациональных чисел в качестве именно чисел, а истолковали их как длины, то есть перевели на язык геометрии. Здесь важно подчеркнуть, что введение новых чисел оказало сильнейшее влияние на последующее развитие математики. Очередная катастрофа произошла несколько веков спустя и особенно терзала математику в XVII-XVIII столетиях. В этот раз дело касалось истолкования бесконечно малых величин. Мы видели, что бесконечность участвовала и в первом кризисе. Там она отразилась в способе представления иррациональных чисел. Она будет участвовать и в третьем кризисе. И вообще, полагают некоторые, если резюмировать сущность математики в немногих словах, то можно сказать, что она - наука о бесконечном. Так, крупнейший немецкий ученый XX века Д. Гильберт, имея в виду математику, писал: "Ни одна проблема не волновала гак глубоко человеческую душу, как проблема бесконечного, ни одна идея не оказала сголь сильного и плодотворного влияния на разум, как идея бесконечного". Но вместе с тем, заключает он, "ни одно понятие не нуждается так в выяснении, как понятие бесконечного". Однако вернемся к кризисам. Бесконечно малые - это переменные величины, стремящиеся к тлю, точнее, как было показано позже, стремящиеся к пределу, равному нулю. Кризис возник в силу расплывчатою понимания бесконечно малого. В одних случаях оно приравнивалось к нулю и при вычислениях отбрасывалось, в других же - принималось как значение, отличное от нуля, о чем говорит и само название. Причина столь противоречивого подхода к бесконечно матым объясняется гем, что их рассматривали в качестве |
|
|