"ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда" - читать интересную книгу автора (Хофштадтер Даглас Р.)ГЛАВА I: Головоломка MUОДНИМ ИЗ центральных понятий этой книги является понятие Головоломка формулируется просто: «Можете ли вы получить MU?» Для начала вам будет дана некая строчка (последовательность букв).{1} Чтобы не мучить вас неизвестностью, сообщу эту строчку сразу — это будет MI. Кроме этого, вам будут даны правила, с помощью которых вы сможете превращать одну строчку в другую. Вы можете использовать любое правило, применимое в данный момент; при этом, если таких правил несколько, у вас имеется свободный выбор. Именно в этот момент игра с формальной системой ближе всего подходит к искусству. Само собой, главное требование игры — следование правилам. Это ограничение может быть названо «требованием формальности». Возможно, что в данной главе нам не придется подробно на нем останавливаться. Однако, как бы удивительно это вам не казалось, работая с формальными системами последующих глав, вы увидите, что вам частенько захочется нарушать требование формальности, если у вас раньше не было навыка работы с подобными системами. Наша формальная система — назовем ее MU UIM MUUMUU UIIUMIUUIMUIIUMIUUIMUIIU Однако, хотя все эти строчки и правильны, вы еще не можете ими распоряжаться. Пока у вас имеется единственная строчка — MI. Вы можете расширить вашу «коллекцию» путем применения правил. Первое правило нашей системы: ПРАВИЛО I: Если у вас есть строчка, кончающаяся на I, вы можете прибавить U в конце. Кстати, надо отметить, если вы уже сами об этом не догадались, что в понятии «строчка» важен определенный порядок букв. Например, MI и IM — две разные строчки. Строчка символов совсем не то же самое, что «мешок» с символами, где порядок символов не играет никакой роли. Второе правило нашей системы: ПРАВИЛО II: Если у вас имеется М Поясним это правило на нескольких примерах. Из MIU вы можете получить MIUIU. Из MUM вы можете получить MUMUM. Из MU вы можете получить MUU. Таким образом, буква Третье правило нашей системы: ПРАВИЛО III: Если в какой-либо строчке встречается III, вы можете получить новую строчку, где вместо III будет U. Примеры. Из UMIIIMU вы можете получить UMUMU. Из MIIII вы можете получить MIU (а также MUI). Из IIMII вы не можете, применяя правило III, получить ничего нового. (Все три I должны стоять подряд.) Ни в коем случае нельзя думать, что это правило можно применять в обратном порядке, как в следующем примере: Из MU можно получить MIII. lt;= Это неверно. Все правила читаются только в одном направлении, слева направо. Последнее правило нашей системы: ПРАВИЛО IV: Если в какой-либо строчке встречается последовательность UU, вы можете ее опустить. Из UUU можно получить U. Из MUUUIII можно получить MUIII. Теперь у вас есть все, что нужно, чтобы попытаться вывести MU. Не волнуйтесь, если у вас не будет получаться; просто попробуйте поиграть с системой и постарайтесь схватить суть головоломки MU. Надеюсь, что вы получите удовольствие! Ответ на головоломку MU вы найдете дальше в тексте. Сейчас для нас важен сам процесс поиска решения. Возможно, что вы уже попытались это сделать; если так, то теперь у вас оказалась целая коллекция строчек. Подобные строчки, выведенные путем применения правил, называются В начале этой главы я «подарил» вам теорему MI. Такая «дареная» теорема называется Каждая формальная система обладает набором правил обращения с символами, таких, как четыре правила системы MIU. Подобные правила называются И, наконец, последний термин — (1) MI аксиома (2) MII из (1) по правилу II (3) MIIII из (2) по правилу II (4) MIIIIU из (3) по правилу I (5) MUIU из (4) по правилу III (6) MUIUUIU из (5) по правилу II (7) MUIIU из (6) по правилу IV Выводом теоремы называется последовательное, шаг за шагом, объяснение того, как можно получить данную теорему согласно правилам формальной системы. Понятие вывода основывается на понятии доказательства, являясь, однако, лишь его дальним родственником. Было бы странным утверждать, что мы Большинство читателей, пытаясь решить головоломку MU, начинает выводить теоремы наобум и смотрят, что при этом получается. Вскоре, однако, они замечают, что полученные теоремы обладают некими свойствами; в этот момент в работу включается разум. Возможно, что пока вы не вывели несколько теорем, для вас не было очевидным, что все они будут начинаться с M. В какой-то момент вы заметили некую закономерность и смогли ее объяснить, исходя из правил они таковы; что каждая новая теорема наследует первую букву предыдущей. В результате первые буквы всех теорем восходят к первой букве нашей единственной аксиомы MI — и это доказательство того, что все теоремы системы MIU должны начинаться с M. То, что произошло, очень важно. Это указывает на одно из различий между человеком и машиной. Было бы возможно — и даже весьма нетрудно — запрограммировать компьютер на вывод теорем системы MIU; мы можем включить в программу команду, велящую машине не останавливаться, пока она не выведет U. Читатель уже знает, что компьютер, запрограммированный таким образом, не остановится никогда. В этом нет ничего удивительного. Но что, если бы вы попросили вывести U одного из ваших приятелей? Вы не удивились бы, если бы он через некоторое время подошел к вам, жалуясь, что он никак не может избавиться от M, и что эти поиски — сумасбродная затея. Даже не очень сообразительный человек не может не заметить закономерности в том, что он делает; эти наблюдения помогают ему лучше понять поставленную перед ним задачу. Компьютерная программа, которую мы только что упомянули, этого сделать не может. Когда я сказал, что этот факт показывает различие между человеком и машиной, я имел в виду следующее: компьютер Таким образом, различие в том, что машина Человеческому интеллекту свойственно умение, выпрыгивая за пределы системы, смотреть на то, что он делает, со стороны; при этом он ищет — и часто находит — какую-либо схему, закономерность. В то же время, сказав, что разум способен взглянуть на свою работу со стороны, я не говорю, что он делает это всегда. Зачастую, однако, для этого бывает достаточно лишь небольшого толчка. Например, человеку, читающему книгу, может захотеться спать. Вместо того, чтобы дочитать книгу до конца, он, скорее всего, отложит ее в сторону и потушит свет. При этом он «выходит из системы»; нам это кажется вполне естественным. Другой пример: человек А смотрит телевизор. В комнату входит человек Б и показывает явное неудовольствие ситуацией. Человек А может решить, что он понимает, в чем дело, и попытаться исправить положение, выходя из данной системы (той программы телевизора, которую он смотрел) и переключая телевизор на другой канал в поисках лучшей передачи. Б, однако, может иметь в виду более радикальный «выход из системы» — а именно, вообще выключить телевизор! В некоторых случаях только редкие личности могут заметить систему, управляющую жизнью многих людей — систему, никогда раньше таковой не считавшуюся. Подобные личности зачастую посвящают жизнь тому, чтобы убедить остальных, что система действительно существует, и что из нее необходимо выйти! Насколько хорошо можно научить компьютер выскакивать за пределы системы? Я приведу пример, в свое время удививший многих наблюдателей. Не так давно на шахматном чемпионате среди компьютеров у одной из программ (самой слабой) оказалась необычайная особенность — сдаваться задолго до конца партии. Она не была хорошим игроком, зато умела увидеть, когда позиция становилась безнадежной, и сдаться в этот момент, вместо того, чтобы ждать, пока другая программа пройдет через скучную процедуру матования. Хотя та программа проиграла все свои партии, она сделала это с шиком, удивив многих местных знатоков шахмат. Таким образом, если мы определим здесь «систему» как «делать ходы шахматной партии», ясно, что та программа имела сложную, заранее запрограммированную способность выходить из системы. С другой стороны, если вы считаете, что «системой» в данном случае является «все то, что компьютер запрограммирован делать», несомненно, что та программа вовсе не умела выходить из системы. Изучая формальные системы, очень важно отличать работу Головоломка MU была сформулирована таким образом, чтобы читатель некоторое время работал внутри системы, выводя теоремы. В то же время, ее формулировка не обещала, что, оставаясь внутри системы, он сможет добиться результата. Таким образом, система MIU предполагает некоторое колебание между двумя режимами работы. Эти режимы можно разделить, используя два листа бумаги: на одном из них вы работаете «в качестве машины», заполняя лист теоремами; на другом вы работаете «в качестве мыслящего существа» и можете делать все, что вам подскажет смекалка: использовать русский язык, записывать идеи, работать в обратном порядке, использовать иксы, сжимать несколько шагов в один, менять правила системы, чтобы посмотреть, что из этого выйдет — короче, все, что придет вам в голову. Вы можете заметить, что числа 3 и 2 играют важную роль в системе, так как I сокращаются группами по 3, a U — группами по 2; кроме того, правило II позволяет удвоение букв (кроме M). На втором листе бумаги у вас могут содержаться какие-то размышления по этому поводу. Позже мы еще вернемся к этим двум способам работы с формальными системами; мы будем называть их механический режим (способ M) и интеллектуальный режим (способ I). Каждой букве системы MIU соответствует один из режимов. В дальнейшем я опишу последний режим — ультра-режим (режим U), свойственный дзен-буддистскому подходу к вещам. Подробнее об этом через несколько глав. Работая над этой головоломкой, вы, вероятно, заметили, что она включает правила двух противоположных типов Тем не менее, кажется, что с MU ситуация иная, чем с U. Наше заключение о том, что U вывести невозможно, основывалось на очевидном свойстве этой строчки она не начинается с M, как все остальные теоремы. Иметь такой простой способ отличать не-теоремы весьма удобно. Однако кто может поручиться, что подобный способ укажет нам Представьте себе джинна, в распоряжении которого имеется все время на свете. Джинн тратит это время на вывод теорем системы MIU. Делает он это весьма методично, скажем, следующим образом: Шаг 1: Приложить все подходящие правила к аксиоме MI. Это дает две новые теоремы: MIU, MII. Шаг 2: Приложить все подходящие правила к теоремам, полученным в шаге 1. Это дает три новые теоремы: MIIU, MIUIU, MIIII. Шаг 3: Приложить все подходящие правила к теоремам, полученным в шаге 2. Это дает пять новых теорем: MUIIIIU, MIIUIIU, MIUIUIUIU, МIIIIIIII, MUI. . . . Следуя этому методу, рано или поздно мы выведем каждую теорему системы, так как правила применяются во всех мыслимых комбинациях. (См. рис. 11) Все удлиняющие и укорачивающие трансформации, упомянутые выше, со временем будут осуществлены. Неясно, однако, как долго нам придется ждать появления той или иной строчки, поскольку теоремы расположены согласно длине их вывода. Это не очень-то полезное расположение, в особенности, если вы заинтересованы в какой-то определенной строчке (например, MU) и при этом не знаете не только того, какой длины ее вывод, но даже того, существует ли этот вывод вообще. Теперь давайте взглянем на обещанную «проверку теоремности»: Ждите, пока данная строчка будет выведена; когда это случится, вы будете знать, что это — теорема. Если же этого не случится никогда, вы можете быть уверены, что данная строчка — не теорема. Это звучит нелепо, так как здесь имеется в виду, что мы согласны ждать ответа до скончания веков. Таким образом, мы опять подошли к вопросу о том, что может считаться «проверкой». Прежде всего, нам необходима гарантия, что мы получим ответ за ограниченный промежуток времени. Такая проверка теоремности, которая завершается в конечный отрезок времени, называется Когда у вас имеется алгоритм разрешения, все теоремы системы приобретают конкретную характеристику. С первого взгляда может показаться, что правила и аксиомы формальной системы сами по себе характеризуют ее теоремы не менее полно, чем алгоритм разрешения; однако проблема здесь заключается в слове «характеризуют». Безусловно, как правила вывода, так и аксиомы системы MIU косвенно характеризуют строчки, являющиеся теоремами; еще более косвенно они характеризуют строчки, теоремами Кстати, одним из требований формальной системы является наличие алгоритма разрешения для аксиом: каждая формальная система должна иметь свою Лакмусовую бумажку для определения аксиомности. Таким образом, у нас не будет проблем по крайней мере в начале работы. Разница между множеством аксиом и множеством теорем в том, что первые всегда имеют алгоритм разрешения, в то время как последние могут его и не иметь. Уверен, что вы согласитесь, что, когда вы начали работать с системой MIU, вам пришлось столкнуться именно с этой проблемой. Вам была известна единственная аксиома системы и простые правила вывода, косвенно характеризующие теоремы — и все же было неясно, каковы последствия этой характеристики. В частности, было совершенно непонятно, является ли MU теоремой. |
||||||
|